SPECIAL ISSUE

TRACHEAL GAS INSUFFLATION: CURRENT STATUS AND FUTURE PROSPECTS

- TGI and Related Techniques to Introduce Gas Flow into the Trachea
- Ventilator-Induced Lung Injury & the Evolution of Lung-Protective Strategies in ARDS
- Animal & Lung Model Studies of TGI
- Clinical Studies of TGI
- Complications of TGI
- Catheters for TGI
- Monitoring and Humidification during TGI
- Intratracheal Catheters As Drug Delivery Systems
Dräger is the first company with commercially available APRV, AutoFlow™, NeoFlow™, Automatic Tube Compensation (ATC®) and the open breathing system. An open system allows spontaneous breathing in every mode of ventilation even during prolonged inspiratory phases.

The freedom to exhale or cough during the inspiratory phase increases patient comfort and decreases a need for sedatives and paralytics. Dräger Medical, Inc. now produces ICU ventilators in its U.S. production plant. German engineering...now made in America.
Does the "Machine" Make a Difference?
Reviews different ventilators and modalities available to respiratory care practitioners and presents information on their impact in clinical settings. By John J. Marini, MD, 40-min. audiocassette.
Item PAD96 $15.00 ($20.00 Nonmembers)

Unconventional Methods for Adult Oxygenation and Ventilation Support
Provides an overview of new and experimental techniques for adult oxygenation and ventilation support. Discusses the techniques, theoretical rationales, methods of application, and experimental evidence of the effectiveness of these unconventional methods. Featuring James K. Stoller, MD, and David J. Pierson, MD, FAARC. 90-min. videocassette.
Item VC36 $49.95 ($99.00 Nonmembers)

Pressure-Controlled Ventilation (PCV): What's with the Pressure?
Reviews the status of PCV and compares the pressure and flow characteristics to those of volume ventilation. Discusses the advantages and disadvantages of PCV in specific patient populations. By Marshall L. Post, BHS, RRT. 40-min. audiocassette.
Item PAD729 $15.00 ($20.00 Nonmembers)

Mechanical Ventilation: The Next 50 Years
Discusses the developments that are likely to occur over the next 50 years to address some of the issues of mechanical ventilation: more responsive volving systems with feedback loops, non-convective flow technology, pharmacologic adjustments, and more cost-efficient equipment. By Neil MacIntyre, MD, FAARC. 40-min. audiocassette.
Item PAD752 $15.00 ($20.00 Nonmembers)

The Practice of Routine Ventilator Checks
Reviews the routine checking and documenting of mechanical ventilator functionality. Discusses the theoretical foundations for checking: details the regulatory and legal issues surrounding ventilator checks; and challenges some of the assumptions about routine ventilator checks. By John W. Soler, RRT, FAARC. 40-min. audiocassette.
Item PAD753 $15.00 ($20.00 Nonmembers)

Ventilator-Associated Pneumonia (VAP): Pathogenesis and Risk Factors
This lecture discusses hospital-acquired infection, specifically ventilator-associated pneumonia and its pathogenesis and risk factors. Demonstrates its occurrence as an independent determinant of mortality for critically ill patients requiring mechanical ventilation. By Marin H. Kollef, MD, 40-min. audiocassette.
Item PAD789 $15.00 ($20.00 Nonmembers)

The Prevention of Ventilator-Associated Pneumonia (VAP) in the Year 2000
This lecture reviews new management strategies and the essential aspects of the pathogenesis of VAP, and the risk factors that predispose this infection. Clinical resources aimed at preventing the occurrence of VAP are also discussed. By Marin H. Kollef, MD. 40-min. audiocassette.
Item PAD790 $15.00 ($20.00 Nonmembers)

Classification of Mechanical Ventilators I
Outlines the basic concepts of ventilator classification and a mathematical model of the respiratory system that provides the basis for classifying ventilator control systems. Also teaches the specific criteria for determining whether a ventilator primarily controls pressure, volume, or flow. Individual Independent Study Package. Softcover book.
Item CS18 $12.00 ($16.00 Nonmembers)

Classification of Mechanical Ventilators II
You will learn detailed information about the control of ventilation in terms of switching from inspiration to expiration. You will also be introduced to the common drive mechanisms used in various mechanical devices. Individual Independent Study Package. Softcover book.
Item CS19 $12.00 ($16.00 Nonmembers)

Classification of Mechanical Ventilators III
Explores the output waveforms that ventilators produce and their clinical implications. Instructs in the various modes of ventilation in terms of the specific combinations of control characteristics along with ventilator performance testing and the practical application of ventilator classification. Individual Independent Study Package. Softcover book.
Item CS20 $12.00 ($16.00 Nonmembers)

Measurement of Static Compliances and Dynamic Characteristics Curves During Mechanical Ventilation
Learn how to compute and record static compliance curves and dynamic characteristics. Also learn the procedure of obtaining pressure-volume measurements and interpret the compliance characteristics measurements. Individual Independent Study Package. Softcover book.
Item PE9 $12.00 ($16.00 Nonmembers)

Call (972) 406-4663 or Fax to (972) 484-2720 with MasterCard, Visa, or Purchase Order Number

ORDER COUPON
Charge to my □ Visa □ MasterCard Card expires ______________
Card # ____________________________
Signature __________________________
Payment enclosed $ ________________ Charge to Purchase Order # __________________________
AARC Member # __________________________
Name/Institution __________________________
Address __________________________
City/State/Zip __________________________
Valid AARC Member Number required for member prices. Prices are subject to change without notice. Texas Customers Only - Please add 8.25% sales tax. Texas exempt customers must attach exemption certificate.

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
<th>Quantity</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipping</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
<tr>
<td>1x Sales Tax</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING FEES

<table>
<thead>
<tr>
<th>Order Total</th>
<th>Ground</th>
<th>AK, HI, PR</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>$15 or less</td>
<td>$4.25</td>
<td>$12.25</td>
<td>$39.50</td>
</tr>
<tr>
<td>$16.01 to $25</td>
<td>$5.25</td>
<td>$14.50</td>
<td>$44.00</td>
</tr>
<tr>
<td>$26.01 to $40</td>
<td>$6.25</td>
<td>$17.00</td>
<td>$48.25</td>
</tr>
<tr>
<td>$41.01 to $60</td>
<td>$7.25</td>
<td>$19.25</td>
<td>$52.50</td>
</tr>
<tr>
<td>$61.01 to $80</td>
<td>$8.25</td>
<td>$21.50</td>
<td>$57.00</td>
</tr>
<tr>
<td>$81.01 to $100</td>
<td>$9.25</td>
<td>$25.00</td>
<td>$65.00</td>
</tr>
<tr>
<td>$101.01 to $125</td>
<td>$10.25</td>
<td>$30.75</td>
<td>$74.25</td>
</tr>
<tr>
<td>$150.01 to $200</td>
<td>$12.25</td>
<td>$33.00</td>
<td>$78.50</td>
</tr>
<tr>
<td>$201.01 to $250</td>
<td>$14.25</td>
<td>$39.00</td>
<td>$86.00</td>
</tr>
<tr>
<td>$251.01 to $300</td>
<td>$16.25</td>
<td>$44.00</td>
<td>$95.75</td>
</tr>
<tr>
<td>$301.01 and up</td>
<td>$18.25</td>
<td>$50.50</td>
<td>$114.25</td>
</tr>
</tbody>
</table>

* International orders require an additional $15 for customs brokerage fee

Mail to: AARC, 11030 Abeles Lane, Dallas, TX 75229-4593
(972) 243-2272 • FAX (972) 484-2720
Visit www.aarc.org for all your respiratory information needs. For other products visit www.aarc.org/professional-resources/keys
When she started the first grade, Amy used an MDI spacer to take her medicine. It was rather large and conspicuous, and as first graders are apt to do, they made rather insensitive remarks regarding her “scuba tank.” Amy would come home crying, asking her mom why she had to be different from everyone else.

One day, when Amy’s mother was at the doctor’s office, she learned about the Hudson RCI Pocket Spacer™ and Pocket Chamber™.

AMY HAS ASTHMA, AND OTHER KIDS USED TO MAKE FUN OF HER.

They’re just as effective as the leading spacer, except they’re 42% smaller¹. So they’ll fit in a pocket. Or a purse.

Or Amy’s favorite lunchbox. So now she can take her medicine discreetly. At Hudson RCI, we make an entire line of products to help asthma sufferers of all ages lead easier, healthier lives. Including SVN’s, peak flow meters and the Pocket Spacer and Pocket Chamber. They’re designed to be convenient, compact, effective and easy to use. Which means patients love them, and more importantly, use them.

Including one very happy and popular first grader.
TRACHEAL GAS INSUFFLATION: CURRENT STATUS AND FUTURE PROSPECTS

A SPECIAL ISSUE

THE PROCEEDINGS OF A CONFERENCE HELD AUGUST 19, 2000 DALLAS, TEXAS

CO-CHAIRS AND GUEST EDITORS

Dean R Hess PhD RRT FAARC and Neil R Maclntyre MD FAARC

Foreword: Tracheal Gas Insufflation

by Neil R Maclntyre—Durham, North Carolina and Dean R Hess—Boston, Massachusetts

CONFERENCE PROCEEDINGS

Tracheal Gas Insufflation and Related Techniques to Introduce Gas Flow into the Trachea

by Dean R Hess and Michael A Gillette—Boston, Massachusetts

Ventilator-Induced Lung Injury and the Evolution of Lung-Protective Strategies in Acute Respiratory Distress Syndrome

by Michael A Gillette and Dean R Hess—Boston, Massachusetts

Animal and Lung Model Studies of Tracheal Gas Insufflation

by Art Naham—St Paul, Minnesota

Clinical Studies of Tracheal Gas Insufflation

by Luis L Blanch—Sabadell, Spain

Complications of Tracheal Gas Insufflation

by Robert M Kacmarek—Boston, Massachusetts

Catheters for Tracheal Gas Insufflation

by Alexander B Adams—St Paul, Minnesota

Monitoring and Humidification during Tracheal Gas Insufflation

by Edgar Delgado, Leslie A Hoffman, Frederick J Tasota, and Michael R Pinsky—Pittsburgh, Pennsylvania

Intra-tracheal Catheters As Drug Delivery Systems

by Neil R Maclntyre—Durham, North Carolina
Want to get out of the parts business?

Get the Grab 'n Go system, Praxair’s all-in-one portable medical oxygen unit.

Praxair’s Grab ‘n Go™ portable medical oxygen system is an oxygen cylinder with a regulator and a contents gauge already attached. It’s a fast, easy and safe way to dispense portable oxygen. With a Grab ‘n Go oxygen unit, you’re ready to go at a moment’s notice.

Because the Grab ‘n Go system has no separate parts, you don’t waste time searching for and keeping track of equipment. You don’t waste money maintaining and repairing equipment. And you don’t hassle with wrenches and keys.

With Praxair’s Grab ‘n Go system you have everything you need. The built-in gauge lets you verify contents at a glance. And the easy-to-use regulator lets you adjust oxygen flow with the turn of a dial. The Grab ‘n Go system also has a handle that makes it a cinch to carry.

Save time. End frustration. And get out of the parts business.

Want to try Praxair’s Grab ‘n Go oxygen system for free? Get up to 20 Grab ‘n Go units to use in your facility for up to 3 months. To find out more about our demo program, call 1-800-299-7977 ext. 6961 or visit www.praxair.com/healthcare. And while you’re at it, check out our extensive line of respiratory gases, equipment and services.
Books, Films, Tapes, and Software

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Summary: Tracheal Gas Insufflation: Overcoming Obstacles to Clinical Implementation</td>
<td>198</td>
</tr>
<tr>
<td>by Dean R Hess—Boston, Massachusetts and Neil R MacIntyre—Durham, North Carolina</td>
<td></td>
</tr>
<tr>
<td>Interventional Pulmonology (Beamis JF Jr, Mathur PN) reviewed by John K Naylor—Spokane, Washington</td>
<td>200</td>
</tr>
<tr>
<td>Mosby's Diagnostic and Laboratory Test Reference, 4th ed (Pagana KD, Pagana TJ) reviewed by Thomas A Barnes—Boston, Massachusetts</td>
<td>200</td>
</tr>
<tr>
<td>Rapid Interpretation of Ventilator Waveforms (Waugh JB, Deshpande VM, Harwood RJ) reviewed by Max Kirnse—Erlangen, Germany</td>
<td>201</td>
</tr>
<tr>
<td>Pocket Companion for Critical Care Nursing (Melander S, Bucher L) reviewed by June Cardell—Seattle, Washington</td>
<td>202</td>
</tr>
</tbody>
</table>
We know we’re not the first ones to be imitated, but lately we’ve noticed new attempts to copy our revolutionary Mirage® Mask technology. Naturally we’re flattered, but we wanted to point out some key differences.

A true Mirage mask reduces follow-up visits by improving patient compliance. The patented cushion design forms a comfortable and secure seal without having to over tighten the headgear. This feature virtually eliminates problems, like skin irritation and excessive leaks that lead to noncompliance and costly follow-up visits.

A true Mirage mask reduces your inventory while fitting more patients. Three sizes are all you’ll need. In fact, the standard size fits 70-80% of patients.

A true Mirage mask instills confidence in your choice. Our designs are tried and tested. That’s why you won’t see a new ResMed mask introduced every few months. ResMed has made a science of mask design. We apply the research of thousands of facial types to design masks to fit the human face.

Call 800-424-0737 today to find out about our latest specials and bring the Mirage benefits to your business.

Close, But No Cigar

OBJECTIVE: To determine physician and nurse adherence with sedative, analgesic, and neuromuscular blocking agent guidelines in the management of mechanically ventilated patients in a medical intensive care unit, DESIGN: Prospective cohort study. SUBJECTS: One hundred consecutively admitted patients to a medical intensive care unit who required mechanical ventilatory support. A sample of 29 nurses, residents, and attending physicians were interviewed regarding their attitudes and perceptions of the guidelines. MEASUREMENT: Data were collected from concurrent medical records and included the following: demographic characteristics; clinical variables; physician prescriptions of sedative, analgesic, and/or neuromuscular blocking agents; nurse administration of these medications; documentation of monitoring; and assessment of patient hemodynamic status and behaviors. A semistructured interview was elicited from both nurses and physicians about their rationale for the use or nonuse of the guidelines. RESULTS: Patients ranged in age from 24 to 87 yrs, mean 60.7 (± 15.3) yrs. Admission Acute Physiology and Chronic Health Evaluation III scores ranged from 36 to 192, mean 93.8 (± 30.5) and median 88. Length of mechanical ventilatory support ranged from 1 to 112 days, mean 14.8 (± 20.0) days, and median 8 days; medical intensive care unit length of stay ranged from 1 to 46 days, with a mean of 9.8 (± 8.1) days and a median of 8 days. Of the 100 patients, 47% died, 28% returned home, and 25% were discharged to a nursing facility. Eighty-five patients were administered one or more sedative, analgesic, and/or neuromuscular blocking agent, range 1-9 drugs, mean 2.5 (± 1.5) drugs. Physicians prescribed 14 different medications; the most commonly administered drug was lorazepam (n = 71), followed by morphine (n = 39). Physicians and nurses had partial or total adherence to the guidelines in 58% of patients. The initial choice of the drug followed the guidelines in 66% of patients; the overall guideline was followed in 23% of patients. The most common rationales for nonadherence to the guidelines stated by both physicians and nurses were patient-specific factors, resident guideline learning curve, and physician medication preferences. CONCLUSION: Most patients required treatment for agitated behaviors. The majority of treatment regimens partially or totally adhered to the guidelines. Factors such as patient-specific disease states, resident guideline learning curve, and physician preferences of medications may have decreased adherence. Improving adherence to the guidelines is essential to assess their effectiveness in improving clinical outcomes.

Study objectives: To assess the incidence of nosocomial pneumonia (NP) after tracheotomy in an ICU population and to determine NP risk factors during the ICU stay, particularly on the day of tracheotomy. Design: A retrospective study using prospectively collected data. Setting: A 16-bed multidisciplinary ICU. Patients: One hundred thirty-five patients requiring tracheotomy for mechanical ventilation (MV) weaning. Results: The mean (± SD) duration of MV before tracheotomy was 17.8 ± 13.4 days. Thirty-seven cases of NP occurred in 35 patients (25.9%), 8.7 ± 7.3 days after the tracheotomy procedure. NP cases were classified as early NP (n = 19) if they occurred within 5 days after the procedure (mean, 2.7 ± 1.1 days), and as late NP (n = 18) if they occurred beyond the fifth day (mean, 14.4 ± 6.1 days). Multivariate analysis identified the following three independent factors associated with early NP: the presence of po-
RESEARCH PNEUMOTACH SYSTEM

NEW!

Model RSS 100HR for the Hans Rudolph Linear & Bi-directional screen Pneumotachs in 8 flow ranges
Model RSS 100 For the Fixed-Orifice Pneumotachs available in Adult & Neonatal
Measures gas flow using the differential-pressure method
Windows™ software for displaying, storing and reviewing data
System is fully functional as a stand-alone device
LCD screen displays waveform and parameter data in real time
Embedded microprocessor calculates flow rates and provides correction for gas density, viscosity, temperature, barometric pressure, and airway pressure
Calculates over 15 ventilatory parameters
Integrated breath detection algorithm automatically detects start and end of breath
Built-in linearization routine calibration function for Rudolph Pneumotachs
Serial RS232 and analog outputs provided for data collection

HANS RUDOLPH, inc.
MAKERS OF RESPIRATORY VALVES SINCE 1938
TEL: (816) 363-5522 U.S.A. & CANADA (800) 456-6695
FAX: 816-822-1414 E-Mail: hr@rudolphkc.com www.rudolphkc.com
7205 CENTRAL, KANSAS CITY, MISSOURI 64114 U.S.A.

Circle 117 on product info card

Circle 120 on reader service card

The use of alpha-1 antitrypsin deficiency, and a data centering coordinate with responsibility for database management and analysis. Questionnaires are to be completed by providers about demographic features, alpha-1 antitrypsin phenotype, smoking history, and health-care utilization were distributed to prospective registrants through the following channels: mailings from the Alpha One Foundation; mailings from the clinical resource centers; and distribution by home-care and pharmaceutical companies. Information from this questionnaire formed the basis of the initial registry database. Results: Between May 1997 and June 1999, 7,789 forms were distributed, and forms were returned by 712 unique registrants. Registrants have the following characteristics: mean (± SD) age, 49.3 ± 13.2 years; women, 47.7%; white, 96.2%; ethnicity, 70.7%; ex-smokers, 73.3%; COPD patients, 87.2% (emphysema patients, 54.2%; chronic bronchitis patients, 33.7%); and self-reported liver disease, 6.4%. The mean number of physician visits reported by registrants in the preceding 12 months was 7.8 ± 9.4, 59% reported currently receiving IV augmentation therapy, and 35% reported using supplemental oxygen at home. Examples of ongoing research studies using this unique database include: (1) a case-control study to evaluate occupational risk factors for obstructive lung disease in individuals with alpha-1 antitrypsin deficiency, and (2) a study to evaluate the healthcare costs for affected individuals. Conclusions: A registry currently including 712 individuals with alpha-1 antitrypsin deficiency has been organized through a collaboration between physician-investigators and a patient-organized research foundation. Use of the registry has already facilitated studies that were previously difficult because of the paucity of identifiable study subjects. The registry cohort promises to provide an important resource for future clinical and epidemiologic studies.

Background: Significant challenges exist in investigating uncommon illnesses because too few patients are seen at any single clinical center to permit appropriate research studies. Recognizing this impediment to clinical research in alpha-1-antitrypsin deficiency, the Alpha One Foundation, a patient-organized research foundation, has collaborated with clinician-scientists to organize a voluntary registry of individuals with alpha-1-antitrypsin deficiency. Purpose: To facilitate clinical research in alpha-1-antitrypsin deficiency by organizing a registry of affected individuals willing to be approached to participate in clinical studies. Methods: El-
It’s the gift of a lifetime.

A bequest to the American Heart Association says something special about the giver. It’s an expression of hope, a gift of health given to generations to come. It’s an unselfish act that shows you care about others and want to leave the world better than you found it. Your gift will be used to fund research and educational programs to fight heart attack, stroke, high blood pressure and other heart and blood vessel diseases. To find new ways to stop the sadness, suffering and death — and give others the freedom of good health. To learn more about how you can leave a legacy for the future, call 1-800-AHA-USA1. Do it today.

OBJECTIVE: To compare pulse oximetry saturation (S_{po2}) with arterial blood gas saturation (S_{aO2}) obtained during clinical routine to determine the optimal lowest reliable value of S_{po2} in ventilator-dependent patients before setting up a nurse-directed protocol of P_{o2} titration. DESIGN: Prospective clinical study. SETTING: Surgical intensive care unit in a university hospital. PATIENTS: Thirty-three patients with a pulse oximeter probe in whom arterial blood gas was measured with a radial artery line. INTERVENTIONS: S_{po2} was recorded by the nurses and compared with S_{aO2} obtained by blood gas analysis with a co-oximeter. Two sensors currently used in our surgical intensive care unit and connected to a monitor (HP Omnicon M1105/66A; Hewlett Packard, Andover, MA) were tested. In group I, the Duranox DS 100A (Nellcor Puritan Bennett, Pleasanton, CA), a reusable sensor, was used. In group II, the Oxisensor D25L (Nellcor Puritan Bennett), a nonreusable sensor, was used. MEASUREMENTS AND MAIN RESULTS: In group I, 64 data pairs were obtained. In this group, S_{po2} ranged from 87% to 98% and S_{aO2} ranged from 92 to 100%. The bias was -1.90% and the limits of agreement ranged from -5.56 to 1.76%. In group II, 47 data pairs were obtained. In this group, S_{po2} ranged from 87% to 99% and S_{aO2} ranged from 92 to 100%. The bias was -2.39% and the limits of agreement ranged from -6.62 to 1.64%. CONCLUSIONS: In the range of S_{po2} tested, regardless of the sensor used, S_{po2} overestimated S_{aO2}. Large limits of agreement were found. Based on this result, the authors concluded that before defining a nurse-directed protocol of P_{o2} titration with S_{po2}, the material used daily must be evaluated. A minimum threshold S_{po2} value of 96% in both groups I and II is more reliable to ensure $S_{po2} \geq 90%$.

OBJECTIVE: To assess the rate of occurrence and nature of airway accidents in intubated patients. DESIGN: Prospective recording of all airway accidents in a 16-bed multidisciplinary intensive care unit. PATIENTS: A total of 5,046 ventilated patients intubated for 9,289 days during 4 yrs. MEASUREMENTS AND MAIN RESULTS: We determined the number and diagnoses of intubated and ventilated patients, the number and timing of airway accidents, the type of tracheal tube used and duration for which the tube was in situ, the description of the type of accident, the severity of the accident, and its impact on the course of the patient’s illness, whether the patient needed reintubation, and whether the accident was preventable. The total accident rate was 36 of 5,046 patients during 9,289 intubated patient days; 26 occurred in 5,043 endotracheally intubated patients during 8,446 patient endotracheal tube days. There were 10 tracheostomy-related accidents from a total of 79 patients with tracheostomies during 843 tracheostomy patient days. Six had severe consequences and one resulted in death. Eleven were completely preventable, 17 partly preventable, and 8 were considered unpreventable. Self-extubation was the most common accident. Seven of 13 self-extubations occurred in patients due to elective extubation in the next few hours. Twelve of 15 patients with self- or accidental extubation of an endotracheal tube accidents did not require reintubation. CONCLUSIONS: Airway accidents occurred at low levels with even lower rates of resultant morbidity and mortality. Tracheostomy accidents are more common than those with an endotracheal tube.

Safety, Efficacy, and Cost-Effectiveness of Mechanical Ventilation with Humidifying Filters Changed Every 48 Hours: A Prospective,
OBJECTIVE: To determine whether three hydrophobic and hygroscopic heat and moisture exchangers (HMEs) retain their heating and humidiﬁng properties assessed by psychrometric measurements of absolute humidity, relative humidity, and tracheal temperature for 48 hrs without any drop in their bacteriologic efﬁciency. DESIGN: Prospective randomized clinical trial. PATIENTS: Sixty-one consecutive unselected mechanically ventilated intensive care unit patients. INTERVENTIONS: Patients were randomly allocated to one of the three HMEs studied (Hygrobac-Dar from Mallinckrodt, n = 21; HumidVent from Girtech, n = 20; and Clear-Thermal from Intersurgical, n = 20). MEASUREMENTS AND MAIN RESULTS: Hygrometric parameters were measured by psychrometry after 3, 24, and 48 hrs of use. Peak airway pressure was recorded every 6 hrs and averaged over 24 hrs. Bacterial colonization of both patients and circuits was studied. Patients in all three groups were similar in terms of age, indications for, and overall duration of mechanical ventilation. Tracheal tube occlusion never occurred. Hygrometric data included 371 measurements where bacteriologic data included >700 samples and cultures. The Hygrobac-Dar HMEs gave a significantly higher absolute humidity whatever the time of measurement (3, 24, or 48 hrs) than the other two HMEs (p < 0.001). The ClearThermal HMEs gave the poorest hygrometric parameters (p < 0.01); five of them were replaced prematurely (24 hrs) because the absolute humidity was <25 mg H₂O/L. This did not occur for the other HMEs. Mean peak airway pressures were identical in the three groups. The bacterial colonizations of both patient and circuit were similar (and negligible for circuits) for all three groups. CONCLUSION: Some HMEs may be used safely for 48 hrs without change. However, this does not pertain to every brand of HME. Objective in-vivo evaluation of their humidiﬁng performances is decisive before extending their duration of use.

OBJECTIVE: To conduct a cost-effectiveness analysis of the use of inhaled nitric oxide (NO) vs. oxygen administered to near-term (gestational age ≥34 wks) newborns with severe respiratory illness that were referred for consideration of extracorporeal membrane oxygenation (ECMO). DESIGN: The cost-effectiveness analysis was based on outcome and utilization data from two multicentered randomized clinical trials conducted by the Canadian Inhaled Nitric Oxide Study group, one for patients with congenital diaphragmatic hernia (CDH) and one for patients without CDH. Data from the western Canadian ECMO center were used to establish costs. SETTING: Patients were cared for in Canadian regional neonatal intensive care units, including two ECMO centers. Air transport was used for transporting patients between centers. PATIENTS: Term and near-term newborns with severe respiratory illness who were receiving maximum conventional therapy and whose oxygenation index was >40. INTERVENTIONS: Patients randomly received NO or oxygen. If their conditions deteriorated, they qualiﬁed for ECMO. Not all that qualiﬁed for ECMO received it because of individual parent/physician preferences. MEASUREMENTS AND MAIN RESULTS: The cost-effectiveness ratio was the ratio of net cost (including neonatal intensive care, ECMO, and transport) to net outcome (survival) for the two interventions. For non-CDH cases, the cost-effectiveness ratio was $36,613 (Canadian) per life saved; the conﬁdence intervals were wide and the

MARK YOUR CALENDARS!
FUTURE AARC CONGRESSES

December 1-4, 2001
San Antonio, Texas

October 5-8, 2002
Tampa, Florida

December 8-11, 2003
Las Vegas, Nevada

December 4-7, 2004
New Orleans, Louisiana
RESULTS: The small numbers of patients in the trials precluded significant results. Further, our results have a short-term time horizon (discharge to home or death). Thus, for non-CDH patients, the favorable ratio provides very qualified evidence in favor of NO.

OBJECTIVE: To identify clinically measurable factors that could predict outcome for pediatric patients undergoing mechanical ventilatory support after bone marrow transplant. DESIGN: Cohort study. SETTING: A referral center for bone marrow transplant patients in Seattle, Washington. PATIENTS: Children <17 yrs old who received a bone marrow transplant and subsequently required mechanical ventilatory support for ≥24 hrs between 1983 and 1996. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Data were abstracted from the charts of 121 pediatric patients who received a bone marrow transplant and subsequently required mechanical ventilatory support. A total of 19 patients (16%) survived to be extubated and survived for ≥30 days post-extubation. Major risk factors for death included respiratory failure as the reason for endotracheal intubation (4% survival), the presence of pulmonary infection (6% survival), and impairment of more than one organ system (2% survival if more than one organ system was dysfunctional on day 7 postintubation). CONCLUSIONS: Although the prognosis generally is poor among pediatric bone marrow transplant recipients who subsequently require mechanical ventilatory support, there appear to be some groups within this population in whom the likelihood of survival is close to 0. Because the chance of survival was so small for children with dysfunction of more than one organ system on day 7 after intubation, a recommendation to limit medical support for these children could be considered pending the results of other studies.

A vital capacity maneuver (VCM) (inflating the lungs to 40 cm H2O for 15 s) is effective in relieving atelectasis during general anesthesia or after cardiopulmonary bypass (CPB). The study was undertaken to investigate the safety of one or repeated VCM. Five groups of six pigs were studied. Two groups had general anesthesia for 6 h and one group received a VCM every hour. Three other groups received CPB. VCM was performed after CPB in two of these groups. VCM was then repeated every hour in one of the groups. Lung damage was evaluated by extravascular lung water (EVLW) measurement, light microscopy, and the halftime (T½) of disappearance from the lung of a neutalized aerosol containing 99mTc-DTPA. No changes were noted in extravascular lung water. The pigs subjected to VCM decreased their T½. In the groups exposed to repeated VCM, T½ remained lowered (CPB pigs) or decreased over time (non-CPB pigs). No lung damage could be seen on the morphology study. These results suggest that one VCM is a safe procedure. The increase in lung clearance of 99mTc-DTPA not associated with an increase in lung water when VCM is repeated may have been caused by an increase in lung volume. Therefore, repeated VCM also appears to be safe. IMPLICATIONS: This study demonstrates in an animal model that inflating the lung once or repeatedly to the vital capacity is a safe procedure. This maneuver, also called the vital capacity maneuver, can be used to relieve lung collapse which occurs in all patients during general anesthesia.

Patients fail to comply with asthma medication for a variety of reasons. These range from physical inability to use an inhaler, through simple forgetfulness, to a conscious decision not to use medication as prescribed due to internal or cultural health beliefs or socioeconomic factors. In some patients, poor self-care because of deep-rooted psychological factors (i.e. factors of which patients have only limited awareness) can affect compliance. Poor doctor-patient communication can be the cause in many other individuals. Thus, there is no single solution that will improve compliance in all patients. Simplifying the regimen or providing memory aids will be sufficient for some patients, while education or psychological counselling will be more appropriate for others. Doctors can also use a range of communication skills to improve the way in which they present information, motivate patients and reinforce progress. These approaches, plus respect for patients’ health beliefs and involving them in treatment decisions, can help foster an atmosphere of mutual responsibility and concordance over medicine taking.

The volume dependence of single breath carbon monoxide diffusing capacity (DLCO) and carbon monoxide transfer coefficient (KCO) was determined in 24 healthy subjects. The change in DLCO [fraction of DLCO measured at total lung capacity (TLC)] to change in alveolar volume [fraction of alveolar volume (VA) at TLC] closely fitted a simple linear regression and matched a theoretical model. As VA decreased, DLCO fell linearly and KCO increased as expected from the relation of DLCO to VA. The equations for adjustment of predicted DLCO and KCO for alveolar volume are: DLCO/VA = 0.58 + 0.42 VA/VA (talc), KCO/VA (talc) = 0.42 + 0.58(VA/VA (talc)). DLCO and KCO were evaluated in 2313 patients. Subgroups of patients with asthma, emphysema, extrapulmonary lung disease, interstitial lung disease and lung resection were identified. Unadjusted DLCO and KCO percent predicted values showed large differences and much variability, so can be misleading. As expected, KCO and DLCO percent predicted value, adjusted for alveolar volume were nearly identical. Subgroups have characteristic patterns of VA and unadjusted and adjusted DLCO and KCO. Changes in DLCO and KCO with alveolar volume are relevant for accurate interpretation of diffusion in patients with low lung volumes. Adjusting predicted DLCO and KCO for alveolar volume provides a better assessment of lung function.

To describe the long-term effects of nasal continuous positive airway pressure (CPAP) on the rate of traffic car accidents, excessive daytime sleepiness (EDS) and mood in patients with obstructive sleep apnea syndrome (OSAS), we investigated the changes of these parameters before and after nasal CPAP treatment using a questionnaire. Seventy-five male patients who were diagnosed with severe OSAS by polysomnography were evaluated for driving competence, by looking at their driving history for 2 yr, for EDS by the Epworth Sleepiness Scale (ESS) and for mood by the Self-related Depression Scale (SDS), and then underwent nasal CPAP treatment. After 2 yr of treatment, questionnaires inquiring about the patients’ use of CPAP, their ESS, SDS and driving history during treatment were sent to the patients. A total of 47 patients (63%) responded to these questionnaires. Forty-six of the 47 responders had continued to use the nasal CPAP and completed the questionnaire. No
traffic car accidents were observed among the 39 routine car users during treatment, while 13 of 39 patients (33%) had had car accidents before treatment. Although near-miss accidents had been reported by 32 of 39 patients (82%) before treatment, only four patients reported near-miss accidents during nasal CPAP treatment. The mean score of ESS was significantly (p<0.01) reduced in 46 patients after nasal CPAP. The mean score of SDS was also decreased (p<0.01) after nasal CPAP in 46 patients. Although 26 of 41 patients had been depressive on SDS before treatment, the mood was improved in 13 patients after nasal CPAP. These results suggest that long-term nasal CPAP treatment reduces the rate of traffic car accidents and improves the EDS and the mood in patients with OSAS.

Measurement of the intrinsic positive end-expiratory pressure (PEEPi) is important in the management of ventilated patients. Here, a new recursive least squares method for on-line monitoring of PEEPi is proposed for mechanically ventilated patients. The procedure is based on the first-order model of respiratory mechanics applied to experimental measurements obtained from eight ventilator-dependent patients ventilated with four different ventilatory modes. The model PEEPi (PEEPmod) was recursively constructed on an inspiration-by-inspiration basis. The results were compared with two well-established techniques to assess PEEPi: end-expiratory occlusion to measure static PEEPi (PEEPst), and change in airway pressure preceding the onset of inspiratory airflow to measure dynamic PEEPi (PEEPdyn). PEEPi mod was significantly correlated with both PEEPdyn (r = 0.77) and PEEPst (r = 0.90). PEEPmod (5.6 ± 3.4 cm H2O) was systematically > PEEPdyn and PEEPst (2.7 ± 1.9 and 8.1 ± 5.3 cm H2O, respectively), in all the models without external PEEP. Focusing on the five patients with chronic obstructive pulmonary disease, PEEPmod was significantly correlated with PEEPst (r = 0.71), whereas PEEPdyn (r = 0.22) was not. When PEEP was set 5 cm H2O above PEEPst, all the methods correctly estimated total PEEP, i.e., 11.8 ± 5.3, 12.5 ± 5.0, and 12.0 ± 4.7 cm H2O for PEEPmod, PEEPdyn, and PEEPdyn, respectively, and were highly correlated (0.97-0.99). We interpreted PEEPmod as the lower bound of PEEPi, and concluded that our method is suitable for on-line monitoring of PEEPi, in mechanically ventilated patients.

Background: As prophylaxis against influenza in families, amantadine and rimantadine have had inconsistent effectiveness, partly because of the transmission of drug-resistant variants from treated index patients. We performed a double-blind, placebo-controlled study of inhaled zanamivir for the treatment and prevention of influenza in families. Methods: We enrolled families (with two to five members and at least one child who was five years of age or older) before the 1998-1999 influenza season. If an influenza-like illness developed in one member, the family was randomly assigned to receive either inhaled zanamivir or placebo. The family member with the index illness was treated with either 10 mg of inhaled zanamivir (163 subjects) or placebo (158) twice a day for 5 days, and the other family members received either 10 mg of zanamivir (414 subjects) or placebo (423) once a day as prophylaxis, for 10 days. The primary end point was the proportion of families in which at least one household contact had symptomatic, laboratory-confirmed influenza. Results: The proportion of families with at least one initially healthy household contact in whom influenza developed was smaller in the zanamivir group than in the placebo group (4 percent vs. 19 percent, p <
0.001; the difference represented a 79 percent reduction in the proportion of families with at least one affected contact. Zanamivir provided protection against both influenza A and influenza B. A neuraminidase-inhibition assay and sequencing of the neuraminidase and hemagglutinin genes revealed no zanamivir-resistant variants. Among the subjects with index cases of laboratory-confirmed influenza, the median duration of symptoms was 2.5 days shorter in the zanamivir group than in the placebo group (5.0 vs. 7.5 days, p = 0.01). Zanamivir was well tolerated.

Conclusions: When combined with the treatment of index cases, prophylactic treatment of family members with once-daily inhaled zanamivir is well tolerated and prevents the development of influenza. In this study there was no evidence of the emergence of resistant influenza variants.

BACKGROUND: Patient-centered decision making, which in the United States is typically considered to be appropriate, may not be universally endorsed, thereby harboring the potential to complicate the care of patients from other cultural backgrounds in potentially unrecognized ways. This study compares the attitudes toward ethical decision making and autonomy issues among academic and community physicians and patients of medical center outpatient clinics in Japan and the United States.

METHODS: A questionnaire requesting judgments about seven clinical vignettes was distributed (in English or Japanese) to sample groups of Japanese physicians (n = 400) and patients (n = 65) as well as US physicians (n = 120) and patients (n = 60) that were selected randomly from academic institutions and community settings in Japan (Tokyo and the surrounding area) and the United States (the Stanford/Palo Alto, CA, area). Responses were obtained from 273 Japanese physicians (68%), 58 Japanese patients (89%), 98 US physicians (82%), and 55 US patients (92%). Physician and patient sample groups were compared on individual items, and composite scores were derived from subsets of items relevant to patient autonomy, family authority, and physician authority.

RESULTS: A majority of both US physicians and patients, but only a minority of Japanese physicians and patients, agreed that a patient should be informed of an incurable cancer diagnosis before their family is informed and that a terminally ill patient wishing to die immediately should not be ventilated, even if both the doctor and the patient’s family want the patient ventilated (Japanese physicians and patients vs US physicians and patients, p < 0.001). A majority of respondents in both Japanese sample groups, but only a minority in both US sample groups, agreed that a patient’s family should be informed of an incurable cancer diagnosis before the patient is informed and that the family of an HIV-positive patient should be informed of this disease status despite the patient’s opposition to such disclosure (Japanese physicians and patients vs US physicians and patients, p < 0.001). Physicians in both Japan and the United States were less likely than patients in their respective countries to agree with physician assistance in the suicide of a terminally ill patient (Japanese physicians and patients vs US physicians and patients, p < 0.05). Across various clinical scenarios, all four respondent groups accorded greatest authority to the patient, less to the family, and still less to the physician when the views of these persons conflicted. Japanese physicians and patients, however, relied more on family and physician authority and placed less emphasis on patient autonomy than the US physicians and patients sampled. Younger respondents placed less emphasis on family and physician authority.

CONCLUSIONS: Family and physician opinions are accorded a larger role in clinical decision making by the Japanese physicians and patients sampled than by those in the United States, although both cultures place a greater emphasis on patient preferences than on the preferences of the family or physician. Our results are consistent with the view that cultural context shapes the relationship of the patient, the physician, and the patient’s family in medical decision making. The results emphasize the need for clinicians to be aware of these issues that may affect patient and family responses in different clinical situations, potentially affecting patient satisfaction and compliance with therapy.

EVIDENCE: The literature review revealed 24 articles eligible for full review by the panel, 19 of which dealt with the primary management approach to PPE and 5 with a rescue approach after a previous approach had failed. Of the 19 involving the primary management approach to PPE, there were 3 randomized, controlled trials; 2 historically controlled series, and 14 case series. The number of patients included in the randomized controlled trials was small; methodologic weaknesses were found in the 19 articles describing the results of primary management approaches to PPE. The proportion and 95% CI of patients suffering each of the two relevant outcomes (death and need for a second intervention to manage the PPE) were calculated for the pooled data for each management approach from the 19 articles on the primary management approach. The pooled proportion of deaths was higher for the no drainage (6.6%), therapeutic thoracentesis (10.3%), and tube thoracostomy management approaches (8.8%) than for the fibrinolytic (4.3%), VATS (4.8%), and surgery (1.9%) approaches, but the 95% CI showed considerable overlap among all six possible primary management approaches. The pooled proportion of patients needing a second intervention to manage the PPE was also higher for the no drainage (49.2%), therapeutic thoracentesis (46.3%), and tube thoracostomy (40.3%) management approaches than for the fibrinolytic (14.9%), VATS (40%), and surgery (10.7%) approaches; there was no overlap in the 95% CI between the first three and the last three management approaches, indicating a nonrandom difference.

RECOMMENDATIONS: The studies identified through a careful literature review as relevant to the medical and surgical management of PPE have significant methodological limitations. Despite these limitations in the data, there did appear to be consistent and possibly clinically meaningful trends for the pooled data and the results of the randomized, controlled trials and the historically controlled series on the primary management approach to PPE. Based on these trends and consensus opinion, the panel recommends the following approach to managing PPE: In all patients with acute bacterial pneumonia, the presence of a PPE should be considered. Recommendation based on level C evidence. In patients with PPE, the estimated risk for poor outcome, using the panel recommended approach based on pleural space anatomy, pleural fluid bacteriology, and pleural fluid chemistry, should be the basis for determining whether the PPE should be drained. Recommendation based on level D evidence. Patients with category 1 or category 2 risk for poor outcome with PPE may not require drainage. Recommendation based on level D evidence. Drainage is recommended for management of category 3 or 4 PPE based on pooled data for mortality and the need for second interventions with the no drainage approach. Recommendation based on level C evidence. Based on the pooled data for mortality and the need for second interventions, therapeutic thoracentesis or tube thoracostomy alone appear to be insufficient treatment for managing most patients with category 3 or 4 PPE. Recommendation based on level C evidence. However, the panel recognizes that in the individual patient, therapeutic thoracentesis or tube thoracostomy, as planned interim steps before a subsequent drainage procedure, may result in complete resolution of the PPE. Careful evaluation of the patient for several hours is essential in these cases. If resolution occurs, no further intervention is necessary. Recommendation based on level D evidence. Fibrinolytics, VATS, and surgery are acceptable approaches for managing patients with category 3 and category 4 PPE based on cumulative data across all studies that indicate that these interventions are associated with the lowest mortality and need for second interventions. Recommendation based on level C evidence.

Study objectives: To estimate the incidence of acute respiratory failure (ARF) in the United States and to analyze 31-day hospital mortality among a cohort of patients with ARF. Design and setting: Retrospective cohort drawn from the Nationwide Inpatient Sample of 6.4 million discharges from 904 representative nonfederal hospitals during 1994. PATIENTS: All 61,223 patients in the sample whose discharge records indicated all of the following: acute respiratory distress or failure, mechanical ventilation, ≥ 24 h of hospitalization, and age ≥ 5 years. RESULTS: An estimated 329,766 patients discharged from nonfederal hospitals nationwide in 1994 met study criteria for ARF. The incidence of ARF was 137.1 hospitalizations per 100,000 US residents age ≥ 5 years. Incidence increased nearly exponentially each decade until age 85 years. Overall, 35.9% of patients with ARF did not survive to hospital discharge. At 31 days, hospital mortality was 31.4%. According to the proportional hazards model, significant mortality hazards included age (≥ 80 years and ≥ 30 years), multorgan system failure (MOSF), HIV, chronic liver disease, and cancer. Hospital admission for coronary artery bypass, drug overdose, or trauma other than head injury or burns was associated with a reduced mortality hazard. Interaction was present between age and MOSF, trauma, and cancer. A point system derived from the hazard model classified patients into seven groups with distinct 31-day survival probabilities ranging from 24 to 99%. CONCLUSIONS: The incidence of ARF increases markedly with age and is especially high among persons ≥ 65 years of age. Nonpulmonary hazards explain short-term (31-day) survival.

OBJECTIVE: To identify parameters that indicate retained secretions and the need for tracheal suctioning (TS) in patients receiving mechanical ventilation (MV). DESIGN: Prospective observational study. SETTING: A 14-bed medical ICU in a 946-bed university hospital. PATIENTS: Sixty-six consecutive patients receiving MV. INTERVENTIONS: Two successive tracheal suctionings, TS1 and TS2, performed at a 2-h interval as usual patient care. Retained secretions were considered significant if the volume of secretions removed by TS2 was > 0.5 mL. Measurements and results: Variations between TS1 and TS2 of pulse oximetry saturation (SpO2), peak inspiratory pressure (Ppeak), tidal volume (Vt), and Ramsay score were compared between patients with TS2 ≤ 0.5 mL (group 1; n = 27) and patients with TS2 > 0.5 mL (group 2; n = 39). The presence of a sawtooth pattern on flow-volume loop displayed on the monitor screen of the ventilator and of respiratory sounds heard over the trachea before TS2 were compared between the two groups. Variations of Ppeak, Vt, SpO2, and Ramsay score between TS1 and TS2 did not differ between the two groups. However, group 2 had a sawtooth pattern (82% vs 20.65%; p = 0.0001) and respiratory sounds (66.6% vs 25.97%; p = 0.001) more frequently than group 1 before TS2. For the sawtooth pattern, the likelihood ratio (LR) of a positive test was 2.70 and the LR of a negative test was 0.25, while for respiratory sounds it was 2.50 and 0.45, respectively. When the presence of a sawtooth pattern and of respiratory sounds was combined, the LR of a positive test rose to 14.7 and the LR of a negative test was 0.42. CONCLUSIONS: A sawtooth pattern and/or respiratory sounds over the trachea are good indicators of retained secretions in patients receiving MV and may indicate the need for TS. Conversely, the absence of a sawtooth pattern may rule out retained secretions.

Study objective: To determine if aerosolized medications can be targeted to deposit in the smaller, peripheral airways or the larger, central airways of adult cystic fibrosis (CF) patients by varying particle size and inspiratory flow rate. DESIGN: Randomized clinical trial. SETTING: Outpatient research laboratory. PATIENTS: Nine adult patients with CF. INTERVENTIONS: Patients inhaled an aerosol comprised of 3.68 ± 0.04 μm saline solution droplets (two visits) or 1.01 ± 0.2 μm saline solution droplets (two visits) for 30 s, starting from functional residual capacity and breathing at a slow or faster inspiratory flow rate. On all visits, the saline solution was admixed with the radiotracer 99mTc. Immediately after inhalation, a gamma camera recorded the deposition pattern of the radiolabeled in the lungs. Deposition images were analyzed in terms of the inner-outdoor ratio (I/O ratio), a measure of deposition in an inner zone (large, central airways) vs an outer zone (small airways and alveoli). Measurements and results: For the 3.68-μm aerosol, I/O ratios averaged 2.29 ± 1.45 and 2.54 ± 1.48 (p > 0.05), indicating that aerosol distribution within the lungs was unchanged while breathing at 12 ± 2 L/min vs 31 ± 5 L/min, respectively. For the 1.01-μm aerosol, I/O ratios averaged 2.09 ± 0.96 and 3.19 ± 1.95 (p < 0.05), indicating that deposition was predominantly in the smaller airways while breathing at 18 ± 5 L/min and in the larger airways while breathing at 38 ± 8 L/min, respectively. CONCLUSIONS: These results suggest that the targeted delivery of an aerosol to the smaller, peripheral airways or the larger, central airways of adult CF patients may be achieved by generating an aerosol comprised of approximately 1.0-μm particles and inspiring from functional residual capacity at approximately 18 L/min and approximately 38 L/min, respectively.

BACKGROUND: Few data are available regarding vertebral fracture risk in patients treated with oral corticosteroids. The aim of this study was to determine the prevalence and the role of risk factors such as age, bone mineral density (BMD), and corticosteroid use for vertebral deformity in patients receiving long-term corticosteroid therapy. METHODS: Thoraco lumber x-ray films, BMD, and details on corticosteroid use were obtained on 229 consecutive patients treated with long-term corticosteroid regimens (≥ 6 months of prednisone, ≥ 5 mg/d or equivalent) seen at 4 referral centers. Comparisons were made with a population control group of 286 male and female controls not taking corticosteroids (aged ≥ 60 years). RESULTS: Sixty-five patients (28%) had at least 1 vertebral deformity and 25 (11%) had 2 or more vertebral deformities. Older age, independent of BMD, was a significant risk factor for deformity. Patients aged 70 to 79 years had a 5-fold increased risk of deformity compared with patients younger than 60 years (odds ratio, 5.13; 95% confidence interval, 2.03-13.0). Compared with the population controls, the prevalence of deformities increased to a greater extent with each decade of age in the corticosteroid group (p = 0.005). Mean lumbar spine and femoral neck BMD Z scores were lower in the steroid-treated patients with deformities compared with the nonsteroid control group with deformities. When the effects of age, sex, body mass index, and duration of corticosteroid use were adjusted for logistic regression analysis, low BMD was a modest predictor of deformity (for a 1-SD decrease in lumbar spine BMD: odds ratio, 1.31; 95% confidence interval, 1.02-1.68) and for a 1-SD decrease in femoral neck BMD: odds ratio, 1.77; 95% confidence interval, 1.07-2.94). CONCLUSIONS: The combination of increasing age and corticosteroid use is associated with a marked increase in the risk of vertebral deformity. Elderly patients commencing long-term corticosteroid therapy should be considered for antosteoporotic therapy independently of their BMD.

BACKGROUND: In a prospective birth-cohort study, we assessed the relevance of mite and cat allergen exposure for the development of childhood asthma up to age 7 years. METHODS: Of 1314 newborn infants enrolled in five German cities in 1990, follow-up data at age 7 years were available for 939 children. Assessments included repeated measurement of specific IgE to food and inhalant allergens, measurement of indoor allergen exposure at 6 months, 18 months, and 3 years of age, and yearly interviews by a paediatrician. At age 7 years, pulmonary function was tested and bronchial hyper-responsiveness was measured in 645 children. FINDINGS: At age 7, the prevalence of wheezing in the past 12 months was 10.0% (94 of 938), and 6.1% (57 of 939) parents reported a doctor’s diagnosis of asthma in their children. Sensitisation to indoor allergens was associated with asthma, wheeze, and increased bronchial responsiveness. However, no relation between early indoor allergen exposure and the prevalence of asthma, wheeze, and bronchial hyper-responsiveness was seen. INTERPRETATION: Our data do not support the hypothesis that exposure to environmental allergens causes asthma in childhood, but rather that the induction of specific IgE responses and the development of childhood asthma are determined by independent factors.

In mechanically ventilated patients with acute circulatory failure related to sepsis, we investigated whether the respiratory changes in arterial pulse pressure could be related to the effects of volume expansion (VE) on cardiac index (CI). Forty patients instrumented with indwelling systemic and pulmonary artery catheters were studied before and after VE. Maximum and minimal values of pulse pressure (Pppmax and Pppmin) and systolic pressure (Pmsyst) were determined over one respiratory cycle. The respiratory changes in pulse pressure (ΔPP) were calculated as the difference between Pppmax and Pppmin divided by the mean of the two values and were expressed as a percentage. The respiratory changes in systolic pressure (ΔSP) were calculated using a similar formula. The VE-induced increase in CI was ≥ 15% in 16 patients (responders) and < 15% in 24 patients (nonresponders). Before VE, ΔPP (24 ± 9 versus 7 ± 3%, p < 0.001) and ΔSP (15 ± 5 versus 6 ± 3%, p < 0.001) were higher in responders than in nonresponders. Receiver operating characteristic (ROC) curves analysis showed that ΔPP was a more accurate indicator of fluid responsiveness than ΔSP. Before VE, a ΔPP value of 15% allowed discrimination between responders and nonresponders with a sensitivity of 94% and a specificity of 96%. VE induced changes in CI closely correlated with ΔPP before volume expansion (r² = 0.85, p < 0.001). VE decreased ΔPP from 14 ± 10 to 7 ± 5% (p < 0.001) and VE-induced changes in ΔPP correlated with VE-induced changes in CI (r² = 0.72, p < 0.001). It was concluded that in mechanically ventilated patients with acute circulatory failure related to sepsis, analysis of ΔPP is a simple method for predicting and assessing the hemodynamic effects of VE, and that ΔPP is a more reliable indicator of fluid responsiveness than ΔSP.

WHEN YOU'RE ON THE FRONT LINE.
YOU CAN ALWAYS USE REINFORCEMENTS.

As you fight to save lives, you're also fighting cost pressures. The fact is, in today's health care environment, effectively administering critical care means making some difficult decisions.

To do this, you need a resource that provides more than just products.

That's why Respironics is committed to working with you on all fronts. From technologically advanced, easy-to-use products like our BiPAP® Vision® and Esprit® critical care ventilators, both with noninvasive ventilation capability, to the very best people. To our comprehensive, seven-step Respiratory Insufficiency and Failure Management Program that's unlike anything in the industry. All designed to help ensure you can keep saving lives. And save money.

To find out how Respironics can become your most powerful ally, call 1-800-345-6443.

PEOPLE. PRODUCTS. PROGRAMS.

RESPIRATORY INSUFFICIENCY & FAILURE MANAGEMENT PROGRAM
CHRONIC OBSTRUCTIVE PULMONARY DISEASE PROGRAM
ASTHMA AND ALLERGY PROGRAM
SLEEP MANAGEMENT PROGRAM
INFANT CARE PROGRAM

Global Headquarters: Pittsburgh, Pennsylvania USA • 412-731-2100 • Customer Service: 1-800-345-6443
Respironics Europe: +33-(0)1-55-60-19-50 • Respironics Asia Pacific: +852-2343-3421-8
Circle 130 on product info card
PROGRAM GUIDE

PROGRAM #1
Taking the Mystery Out of Weaning the Pediatric Patient from the Ventilator
Peter Beit, BS, RRT, FAARC, and Richard D. Branson, BA, RRT, FAARC

Learn when to begin the process and how to recognize critical events in weaning a pediatric patient. Also teaches the physiological differences between the adult and pediatric patient and why weaning of the pediatric patient is different. The presentation confronts participants with options in providing assisted ventilation and the correct selection of options that expedite weaning.

Live Videoconference -
March 13, 11:30 a.m. - 1:00 p.m. Central Time
Teleconference with Videotape -
April 10, 11:30 a.m. - 12:00 Noon Central Time

PROGRAM #2
Pulmonary Rehabilitation: Standard Care for Chronic Lung Disease Patients
Trina Limberg, BS, RRT, and Thomas J. Kallstrom, RRT, FAARC

Presentation details when to refer a patient for pulmonary rehabilitation and the four elements necessary for the successful operation of a rehabilitation service. Details how to prepare a treatment plan during assessment and how to modify it based on subsequent evaluations as well as how to incorporate rehabilitation techniques into routine bedside therapy sessions.

Live Videoconference -
March 27, 11:30 a.m. - 1:00 p.m. Central Time
Teleconference with Videotape -
April 17, 11:30 a.m. - 12:00 Noon Central Time

PROGRAM #3
Noninvasive Ventilation: The Latest Word
Dean R. Hess, PhD, RRT, FAARC, and Richard D. Branson, BA, RRT, FAARC

Learn how to avoid intubation in the acutely ill patient through identification of patients most likely to benefit from noninvasive ventilation. Learn selection and proper fit of full masks or nasal masks and how to select the proper ventilator based on the patient’s condition and desired outcomes. Also learn when to make adjustments to achieve the goals of unloading respiratory muscles and achieving good patient/ventilator synchrony.

Live Videoconference -
April 24, 11:30 a.m. - 1:00 p.m. Central Time
Teleconference with Videotape -
May 29, 11:30 a.m. - 12:00 Noon Central Time

PROGRAM #4
Education of the Patient with Asthma
Tracey Mitchell, RRT, RPFT, and Thomas J. Kallstrom, RRT, FAARC

This program teaches how to ensure that patients understand the disease process of asthma and their care plan for effective disease management. And, it details what patient education materials are available, their content, where to find them, and the best methods of presentation, including new terminologies, analogies, and techniques.

Live Videoconference -
May 22, 11:30 a.m. - 1:00 p.m. Central Time
Teleconference with Videotape -
June 19, 11:30 a.m. - 12:00 Noon Central Time

PROGRAM #5
ARDS:
The Disease and Its Management
Leonard D. Hudson, MD, and David J. Pierson, MD, FAARC

Presents the four diagnostic criteria for ARDS and the six clinical risk factors that place patients at increased likelihood for developing ARDS. The program will teach viewers how to understand the implications of the lower and upper inflection points on the pressure-volume curve of the respiratory system in ARDS patients; and instruct them in the calculation of estimated required tidal volume.

Live Videoconference -
June 26, 11:30 a.m. - 1:00 p.m. Central Time
Teleconference with Videotape -
July 17, 11:30 a.m. - 12:00 Noon Central Time

PROGRAM #6
New Respiratory Drugs: What, When, and How?
Joseph L. Rau, PhD, RRT, FAARC, and Patrick J. Dunne, MEd, RRT, FAARC

Introduces participants to new formulations such as racemic drug mixtures and single isomers and their effective duration and how they lead to lower costs with improved patient responses. Viewers will learn the use of improved anticholinergics in the treatment of asthma patients and learn the uses and effects of inhaled anti-infective agents.

Live Videoconference -
Aug.14, 11:30 a.m. - 1:00 p.m. Central Time
Teleconference with Videotape -
Sept.11, 11:30 a.m. - 12:00 Noon Central Time

PROGRAM #7
Invasive Ventilation: The Latest Word
Richard Kallet, MS, RRT and Richard D. Branson, BA, RRT FAARC

Learn how proper ventilator management can preclude inflicting harm on the patient and why it is essential for the clinician to understand the function and mechanics of newer mechanical ventilators. Also learn how reducing the patient’s work of breathing is essential in reducing the additional load on ventilatory musculature, and why reinflating lungs and enhancing the functional area of the lung demands extraordinary means.

Live Videoconference -
Sept. 25, 11:30 a.m. - 1:00 p.m. Central Time
Teleconference with Videotape -
Oct. 16, 11:30 a.m. - 12:00 Noon Central Time

PROGRAM #8
Test Your Lungs, Know Your Numbers, Prevent Emphysema
Thomas L. Petty, MD, FAARC and David J. Pierson, MD, FAARC

Reviews the classic signs of COPD with an emphasis on emphysema and a discussion on the measures used to relieve symptoms and slow disease progression. Covers the importance of pulmonary function tests to determine VC, FFC, and FEV1; and why getting patients to know their numbers is the key to early diagnosis and successful treatment.

Live Videoconference -
Oct. 23, 11:30 a.m. - 1:00 p.m. Central Time
Teleconference with Videotape -
Nov. 20, 11:30 a.m. - 12:00 Noon Central Time
ACCREDITATION

RESPIRATORY CARE:
Each program approved for 1 hour of continuing education credit by Continuing Respiratory Care Education (CRCE). Purchase of videotapes only does not earn continuing education credit. Registrants must participate in the live program or the telephone seminar to earn continuing education credits.

NURSING:
Each program is approved for 1.2 hours of continuing education credit by the Texas Nurse Association. Purchase of videotape only, without live question and answer session, does not earn continuing education credit.

REGISTRATION

SINGLE PROGRAMS
$245 Per Facility ($215 for AARC Members)

ENTIRE SERIES OF EIGHT
$1,395 Per Facility-Save $565
($1,225 for AARC Members-Save $495)

LATE REGISTRATION FEE
$15 (if Registering Within One Week of Program)

BILL TO (IF DIFFERENT FROM SHIPPING ADDRESS):
Name __
Title __
Department ____________________________________
Facility _______________________________________
Address _______________________________________
City/State/Zip __________________________________
Telephone ____________________________

RECEPTION OPTIONS
(You Must Select One Only)
- Live Videoconference (C-Band)
- Teleconference with Videotape
- Videotape Only (No CE Credit)*

*Videotapes will not be available until after the live videoconference and do not include course materials.

CHECK THE DESIRED PROGRAMS
- Entire Series of Eight
 #1
 #2
 #3
 #4
 #5
 #6
 #7
 #8

AARC PROFESSOR'S ROUNDS 2 0 0 1
Telephone (972) 243-2272 • Facsimile (972) 484-2720
11030 Abies Lane • Dallas, Texas 75229-4593
Poor hemodynamic tolerance of intermittent hemodialysis (IHD) is a common problem for patients in an intensive care unit (ICU). New dialysis strategies have been adapted to chronic hemodialysis patients with cardiovascular insufficiency. To improve hemodynamic tolerance of IHD, specific guidelines were progressively implemented into practice through the year 1996 in our 26-bed medical ICU. To evaluate the efficiency of these guidelines we retrospectively compared all IHD performed during the years before (1995) and after (1997) implementation of these recommendations. Forty-five patients underwent 248 IHD sessions in 1995 and 76 patients underwent 269 IHD sessions in 1997. The two populations were similar for age, sex, chronic hemodialysis (26% versus 17%), and secondary acute renal failure. In 1997, patients were more severely ill with a higher SAPS II (50 ± 17 versus 59 ± 24; p = 0.036), and more patients required epinephrine or norepinephrine infusion before dialysis sessions (16% versus 34%; p = 0.0001). The compliance to guidelines was high, inducing a significant change in IHD modalities. As a result, hemodynamic tolerance was significantly better in 1997, with less systolic blood pressure drop at onset (33% versus 21%; p = 0.002) and during the sessions (68% versus 56%, p = 0.002). IHD with hypotensive episode or need for therapeutic interventions were less frequent in 1997 (71% versus 61%, p = 0.015). The ICU mortality was similar (53.3% in 1995 versus 47.3% in 1997, p = 0.52) but death rate in 1997, but not in 1995, was significantly less than predicted from SAPS II (+7.3% versus -65.6%; p = 0.02). Length of ICU stay was also reduced for survivors in 1997 (p = 0.04). Implementation of practice guidelines for intermittent hemodialysis in ICU patients lessens hemodynamic instability and may improve outcome.

Gastroesophageal reflux is a potential trigger of asthma that may be clinically silent. This study examines the prevalence of gastroesophageal reflux in asthma patients without reflux symptoms. This prospective cohort study evaluated 26 patients with stable asthma without reflux symptoms using esophageal manometry and 24-h esophageal pH testing. Gastroesophageal reflux was considered present if esophageal acid contact times were abnormal. Demographic variables were analyzed to determine if they predicted the presence of gastroesophageal reflux. Asthma patients with asymptomatic gastroesophageal reflux were compared with 30 age-matched asthma patients with symptomatic gastroesophageal reflux. The prevalence of abnormal 24-h esophageal pH tests in asthma patients without reflux symptoms was 62% (16 of 26). Demographic variables did not predict abnormal 24-h esophageal pH tests in asthma patients with asymptomatic gastroesophageal reflux. Asthma patients with asymptomatic gastroesophageal reflux had higher amounts of proximal esophageal acid exposure (p < 0.05) compared with asthma patients with symptomatic gastroesophageal reflux. Because demographic variables do not predict abnormal 24-h esophageal pH tests in asthma patients without reflux symptoms, 24-h esophageal pH testing is required. This study suggests that gastroesophageal reflux is present in asthma patients, even in the absence of esophageal symptoms.

Sex differences in asthma prevalence and morbidity, assessed with different methods in different populations, have raised several hypotheses about the different susceptibility to asthma in men and women. However, information on the incidence of asthma by age and sex is limited. The aim of this study was to estimate the age- and sex-specific incidence of asthma from birth to 44 yr of age in men and women across several countries, and to evaluate the main factors influencing asthma incidence in young adults. The data of the European Community Respiratory Health Survey, an international, cross-sectional, population-based survey, which were collected in 16 countries from 1991 to 1993 according to a common protocol, and which pertained to 18,659 subjects, were analyzed retrospectively, using the reported age of the first attack as the onset of asthma. During childhood, girls had a significantly lower risk of developing asthma than did boys (relative risk [RR] = 0.74 and 0.56 in the 0- to 5-yr and 5- to 10-yr age classes, respectively). Around puberty, the risk was almost equal in the two sexes (RR = 0.84; 95% confidence interval [CI] = 0.65 to 1.10 in the 10- to 15-yr age class). After puberty, the risk in women was always consistently higher than that in men (RR: 1.38 to 5.91). This pattern was consistent in all of the 16 countries studied, and was not influenced by recall or cohort effects. When the effects of airway caliber and smoking were studied with a case control design, the results showed that women's greater susceptibility to asthma in early adulthood was at least partly explained by their smaller airway caliber (the OR decreased from 2.04 [95% CI: 1.32 to 3.15] to 1.47 [95% CI: 0.89 to 2.44] after controlling for height adjusted FEV1), while smoking did not increase the risk. This analysis strongly confirms that the incidence of asthma shows a sex reversal during puberty, and suggests that airway caliber, in addition to hormonal factors, could play an important role in explaining the different patterns of asthma incidence in men and women.

Accumulating evidence strongly suggests that ventilatory strategy has an important impact on development of lung injury and patient outcome. Adverse ventilatory strategies have been shown to cause release of pulmonary derived cytokines and may permit bacterial translocation from the lung to the systemic circulation. Because endotoxin is a potent and clinically important stimulant of cytokine-mediated systemic inflammatory responses that can lead to multiorgan failure, we investigated the effects of ventilatory strategy on lung-to-systemic translocation of endotoxin. We studied the effects of protective (tidal volume: Vt = 5 mL · kg⁻¹ · pos, endotracheal pressure [PEEP] 10 to 12.5 cm H₂O) versus nonprotective (Vt = 12 mL · kg⁻¹ · PEEP zero) ventilatory strategy on translocation of endotoxin instilled into a tracheally intubated endotoxin. Anesthetized New Zealand White rabbits were subjected to saline lung lavage, and 32 were randomized to one of four groups: PS (protective ventilation); PE (protective ventilation and instilled endotoxin); NS (nonprotective ventilation and instilled saline); NE (nonprotective ventilation and instilled endotoxin), and ventilated for 3 h. Plasma endotoxin levels increased significantly in the NE group, and remained low and unchanged in the other groups. Peak, levels of plasma tumor necrosis factor-alpha (TNF-α) were higher in NE versus other groups, Pao₂, and mean arterial pressure (Pam) were lowest, and requirement for pressor and bicarbonate support greatest, in the NE group. Finally, plasma endotoxin levels were significantly greater in eventual nonsurvivors than survivors. These data provide convincing evidence for pulmonary translocation of lung-derived endotoxin. This translocation depends on ventilatory strategy, and suggests a pathophysiologic link between ventilatory strategy and outcome.

Cardiovascular mortality was prospectively investigated in consecutive coronary artery disease (CAD) patients with versus without obstructive sleep apnea (OSA) during a follow up period of 5 yr. An overnight sleep/ventilatory study was performed in patients requiring intensive care (n = 62, mean age 67.6 ± 10.4 yr, range 44 to 80) during a stable
WHEN YOUR PATIENTS CAN’T BREATHE, THEY RELY ON YOU.
THAT’S WHY YOU NEED THE LATEST INFORMATION
ABOUT THE CARE AND TREATMENT OF ASTHMA

CONTINUING EDUCATION PRODUCTS THAT YOU CAN RELY
ON TO HELP YOUR PATIENTS BREATHE EASIER

EARN CONTINUING EDUCATION CREDIT WITH
ASTHMA DISEASE STATE MANAGEMENT: ESTABLISHING A PARTNERSHIP
A three-part video program that provides instruction in how to create an effective asthma disease management program in your facility and covers diagnosis, pharmacological therapy, environmental controls, patient/family education, and case studies. Approved for two hours of continuing education credit by CRCE and nursing CE credit. Includes workbook. 100 min.
Item PA101 $79.95 ($94.95 nonmembers)

STATUS ASTHOMATICUS SIMULATION
Involves the initial assessment of a 35-year-old man with a history of allergic asthma. Low-flow oxygen is administered initially, followed by bronchodilator therapy. As the simulation progresses, the patient is intubated and receives mechanical ventilation. The user is required to adjust initial settings and adjustments according to ABG results and patient response. Also included in the simulation is a switch to IMV mode, sedation, and eventual extubation and placement on a 40 percent aerosol mask. CAI Software (Requires Windows 3.1).
Item SP12 $65.00

CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) SIMULATION
The user is asked to perform initial assessment and pulmonary function studies on a patient with chronic lung disease. Then, the user classifies the patient's disease as mild, moderate, severe restrictive, and/or obstructive disease. The simulation asks for home and home equipment cleaning recommendations. Three months later the patient enters the ER with respiratory distress, requiring intubation and therapy. CAI Software (Requires Windows 3.1).
Item SP14 $65.00

BRONchodILATORS I: SYMPATHOMIMETIC AMINES
Understand the results of stimulating the autonomic nervous system and the use of sympathomimetic drugs to accomplish bronchodilation. Exposes you to basic aspects of adrenergic bronchodilators and the patient situations for which they are indicated. Individual Independent Study Package (ISP).
Item CS14 $12.00 ($16.00 nonmembers)

BRONchodILATORS II: ANTI-ChOLINERGICS AND XANTHINES
Identifies the three categories of drugs that promote bronchodilation and the mechanism of action for each. This package also provides examples of drugs in each category. Clinical situations are presented with methods of bronchodilation and rationale for method selected. Individual Independent Study Package (ISP).
Item CS15 $12.00 ($16.00 nonmembers)

ASTHMA DRUGS AND MEDICATIONS: WHAT’S RIGHT AND
WHAT’S WRONG
Reviews the pharmacology section of the revised NAEP Guidelines. Additionally, the potential hazards and undesirable side effects of commonly prescribed medications will be discussed, with alternative treatment regimen suggested. Featuring William Lusk, MD, and David J. Person, MD, 80-min. videocassette.
Item VC81 $49.95 ($99.00 nonmembers)

THE RESPIRATORY THERAPIST AND DISEASE STATE MANAGEMENT
Highlights how one group of respiratory therapists successfully established an asthma management program. Discusses development of relationships with third-party payers and how RTs are demonstrating their value. Featuring Barbara Hendon, BA, RRT, and Sam P. Giordano, MBA, RRT, 80-min. videocassette.
Item VC82 $49.95 ($99.00 nonmembers)

ASTHMA DISEASE MANAGEMENT: USING THE REVISED NAEP GUIDELINES IN PRACTICE
Learn the four essential components of the NAEP Guidelines that are essential
to asthma disease management and how these components are incorporated into a comprehensive asthma management program in the work setting, from hospital to home care. Featuring Thomas J. Kallstrom, RRT, Gretchen Lawrence, BA, RRT, and Sam P. Giordano, MBA, RRT. 80-min. videocassette.
Item VC74 $49.95 ($99.00 nonmembers)

ORDER FORM

Method of Payment: _Purchase Order: __ Check Enclosed
_Visa _ MasterCard
Credit Card Number __________________________ Expiration Date __________
Signature (Required for Credit Cards and Purchase Orders)

AARC Member Number ______________________ Telephone Number _________

Name

Institution

Street Address ______________________________

City/State/Zip ________________________________

Valid AARC Member Number Required for Member Prices
Texas Customers Only, Please Add 8.25% Sales Tax Charged on Product Cost and Shipping Charges.
Texas Customers that Are Exempt From Sales Tax Must Attach an Exemption Certificate.
Prices are Subject to Change without Notice.

Quantity Item# Description Price Ea ______ Total ______

Shipping Rates
International orders require an additional $25.

Order Total UPS Reg. AK_HIPR
$15 or less $ 4.25 $ 12.25
$15.01 to $25 $ 6.25 $ 14.50
$25.01 to $40 $ 8.25 $ 17.00
$40.01 to $60 $ 10.25 $ 19.25
$60.01 to $80 $ 12.25 $ 21.50
$80.01 to $100 $ 14.25 $ 23.00
$100.01 to $150 $ 16.25 $ 25.00
$150.01 to $200 $ 18.25 $ 27.50
$200.01 to $250 $ 20.25 $ 29.50
$250.01 to $300 $ 22.25 $ 31.50
$300.01 to $400 $ 24.25 $ 33.50
$400.01 or more $ 26.25 $ 35.50

Item Subtotal ____________
Shipping ____________
Subtotal ____________
Texas Sales Tax ____________
Total ____________

Call (972) 243-2272 or Fax to (972) 454-2720
with MasterCard, Visa, or Purchase Order Number
American Association for Respiratory Care
11030 Ables Lane, Dallas, TX 75229

Other Products Are Available Online at
www.aarc.org/professional/resources/keys/
Visit www.aarc.org
Remember the Alamo...
because right next door will be the

47th International Respiratory Congress

of the American Association for Respiratory Care.

In 2001, the premier respiratory therapy meeting will be held Dec. 1-4 in San Antonio, Texas. For 47 years the AARC has sponsored the “gold standard” of respiratory care meetings. As the longest-running respiratory therapy convention in the world, the AARC’s annual show boasts:

- The lowest cost of continuing education per credit of any show, anywhere.
- The largest and most impressive exhibit hall with the most vendors, from which you can make purchases on the spot!
- The largest gathering of respiratory care experts in the world.
- The most diverse and most dynamic series of lectures, with more respiratory topics than any other meeting.
- The most opportunities for YOU to participate in your profession through research and networking.

REMEMBER... MARK YOUR CALENDARS!

DECEMBER 1–4, 2001 • SAN ANTONIO, TEXAS
47TH ANNUAL INTERNATIONAL RESPIRATORY CONGRESS

For more information, visit www.aarc.org and click on Meetings. Or call 972.243.2272. American Association for Respiratory Care 11030 Ables Lane, Dallas, TX 75229

Visit www.sanantoniocvb.com for up-to-date information about the city.

Treatment of sleep apnea-hypopnea syndrome (SAHS) by fixed continuous positive airway pressure (CPAP) requires an in-laboratory titration procedure to determine the effective pressure level (Peff). We recently reported that one auto-CPAP machine can be used without titration study allowing Peff determination. The aim of this study was to evaluate the accuracy of an auto-CPAP trial at home. A 1- or 2-wk automatic CPAP trial was done at home in 40 patients by estimating the reference pressure (Ppref) to be set and a Pref + 3 cmH2O/4 cmH2O pressure interval. Peff was then determined according to the percentage of CPAP time that was spent ≥ Pref. This Peff value was set on a fixed CPAP machine for two additional weeks and a control sleep study was done. The pressure setting on fixed CPAP had to be increased by 1 ± 1 cmH2O (mean ± SD) above estimated Pref. Sleep improved with fixed CPAP, with a normalization of the apnea + hypopnea index (AIH) in 38 of 40 and resumption of diurnal hypersomnolence. CPAP compliance remained excellent (CPAP use: 6.1 ± 1.7 h/night) after 6.5 ± 2.8 mo of CPAP treatment. These results indicate that auto-CPAP therapy represents a new useful and accurate way to identify conventional CPAP setting outside hospital and sleep laboratories.

The benefits of chronic systemic corticosteroids for patients with chronic obstructive pulmonary disease (COPD) are not well established. To determine whether chronic corticosteroid treatment can be safely withdrawn in “steroid-dependent” COPD patients, we performed a double-blind, placebo-controlled study of 38 patients with steroid-dependent COPD. Patients were randomly assigned to receive their usual maintenance prednisone dose for 6 mo (continuous group) or to be withdrawn from prednisone at a rate of 5 mg per week (dose group). The number of COPD exacerbations per patient (primary outcome) was 2.5 ± 2.7 (mean ± SD) in the continuous group and 2.7 ± 2.5 in the dose group (p = 0.60, 95% confidence interval for the difference: -1.1 to 1.7). Spirometric results, dyspnea, and health-related quality of life did not differ significantly in the two groups. The average daily corticosteroid dose was 10.7 ± 5.2 mg in the continuous group and 6.3 ± 6.4 mg in the dose group (p = 0.003). Weight decreased in the dose group by 4.8 ± 2.0 kg, compared with an increase in the continuous group of 0.5 ± 3.5 kg (p = 0.007). Discontinuation of chronic systemic corticosteroid treatment in steroid-dependent COPD patients did not cause a significant increase in COPD exacerbations, but did reduce total systemic corticosteroid use and body weight. Larger studies may be warranted to establish the relative risks and benefits of chronic corticosteroid treatment of patients with COPD.

Expiratory airway collapse is a characteristic feature in patients with chronic obstructive pulmonary disease (COPD). We hypothesized that this collapse might mask the effects of bronchodilators during forced expiration but not during forced inspiration, and that accordingly, the improvement in forced inspiration and not that in forced expiration with bronchodilator therapy would be related to changes in the perception of dyspnea. In order to investigate this, we conducted lung function measurements, including measurements of forced inspiration and expiration.

Obstructive nonapnic respiratory events (ONAREs) are much more difficult to detect and classify than apneas unless sensitive measures of respiratory effort and airflow are employed. The aim of this study was to compare two measures of respiratory effort, esophageal pressure monitoring (Pes) and pulse transit time (PTT), for scoring of ONAREs by visual analysis. Nine men (age 49 ± 10 yr) with mild to moderate sleep apnea syndrome (AHI of 25.1 ± 10.8/h) were studied and 340 ONAREs (hypopneas and upper airway resistance episodes) were randomly selected for scoring by two experienced observers. Each observer blindly scored each ONARE (once with Pes and once with PTT) with a concurrent pneumotachography trace available for airflow quantification. This permitted the respiratory events scored with PTT to be compared with those scored with Pes, and in addition interobserver variability could be assessed for each signal. Even though standard criteria were used for scoring, there was significant interobserver variability for both Pes (29.7%) and PTT (37.1%). Taking those events for which there was agreement between the observers, PTT had a sensitivity of 79.9% and a positive predictive value of 91.2% (using Pes as the gold standard). In those ONAREs for which there was agreement between the two observers there was a larger percentage reduction in airflow compared to ONAREs that did not concur (51 versus 30.3%, p < 0.001), a larger increase in respiratory effort as assessed by PTT (slope of PTT: 23.1 versus 14.3 arbitrary units, p < 0.01), and a higher incidence in autonomic microarousals detected with PTT (90 versus 45% of ONAREs, p < 0.006). Subtle respiratory events are more difficult to detect than apneas or frank hypopneas. When comparing PTT with esophageal pressure in detecting those events the sensitivity of PTT is good but limited when the reduction in airflow, the increase in respiratory effort, or the arousal reaction is the less clear. However, PTT appears to be a good nonspecific alternative to Pes in the detection of nonapnic obstructive respiratory events, and its ability to detect autonomic arousal gives this physiological signal added clinical usefulness.

The safety and effectiveness of "closed" intensive care units (ICUs) are highly controversial. The epidemiology and outcome of acute renal failure (ARF) requiring replacement therapy (severe ARF) within a "closed" ICU system are unknown. Accordingly, we performed a prospective, 3-center multicenter observational study of all Nephrology Units and ICUs in the State of Victoria (all "closed" ICUs), Australia, and focused on the epidemiology, treatment, and outcome of patients with severe ARF. We collected demographic, clinical, and outcome data using standardized case report forms. Nineteen ward patients and 116 adult ICU patients had severe ARF (13.4 cases/100,000 adults/yr). Among the ICU patients with severe ARF, 37 had impaired baseline renal function, 91 needed ventilation, and 95 needed vasoactive drugs. Intensivists controlled patient care in all cases. Continuous renal replacement therapy (CRRT) was used in 111 of the ICU patients. Nephrological opinion was sought in only 30 cases. Predicted mortality was 59.6%. Actual mortality was 49.2%. Only 11 ICU survivors were dialysed dependent at hospital discharge. In the state of Victoria, Australia, intensivists manage severe ARF within a "closed" ICU system. Renal replacement is typically continuous, and outcomes compare favorably with those predicted by illness severity scores. Our findings support the safety and efficacy of a "closed" ICU model of care.

Noninvasive and invasive diagnostic techniques have been shown to achieve comparable performances in the evaluation of suspected ventilator-associated pneumonia (VAP). We studied the impact of both approaches on outcome in a prospective, open, and randomized study in 3 intensive care units (ICUs) of a 1,000-bed tertiary care university hospital. Patients with suspected VAP were randomly assigned to noninvasive (Group 1) versus invasive (Group 2) investigation (tracheobronchial aspirates [TBAs] versus bronchoscopically-retrieved protected specimen brush [PSB]) and bronchoalveolar lavage [BAL]). Samples were cultured quantitatively, and BAL fluid (BALF) was examined for intra-cellular organisms (ICO) additionally. Initial empiric antimicrobial treatment was administered following the guidelines of the American Thoracic Society (ATS) and adjusted according to culture results (and ICO...
counts in Group 2). Outcome variables included length of ICU stay and mechanical ventilation as well as mortality. Overall, 76 patients (39 nonvasoactive, 37 vasoactive) were investigated. VAP was microbiologically confirmed in 23 of 39 (59%) and 23 of 37 (62%) (p = 0.78). There were no differences with regard to the frequencies of community-acquired and potentially drug-resistant microorganisms (PIRMs). Antimicrobial treatment was changed in seven patients (18%) of Group 1 and 10 patients (27%) of Group 2 because of etiologic findings (including five of 17 with ICO = 2% (p not significant [NS]). Length of ICU stay and mechanical ventilation were also not significantly different in both groups. Crude 30-d mortality was 31 of 76 (41%); and 18 of 39 (46%) in Group 1 and 14 of 37 (38%) in Group 2 (p = 0.16). Adjusted mortality was 16% versus 11% (p = 0.53), and mortality of microbiologically confirmed pneumonia 10 of 23 (44%) in both groups (p = 1.0). We conclude that the outcome of VAP was not influenced by the techniques used for microbial investigation.

Current recommendations for mechanical ventilation in the acute respiratory distress syndrome (ARDS) include the use of small tidal volumes (Vt), even at the cost of respiratory acidosis. We evaluated the effects of this permissive hypercapnia on pulmonary gas exchange with the multiple inert gas elimination technique (MIGET) in eight patients with ARDS. After making baseline measurements, we induced permissive hypercapnia by reducing Vt from 10 ± 2 mL/kg to 6 ± 1 mL/kg (mean ± SEM) at constant positive end-expiratory pressure. After restoration of initial Vt, we infused dobutamine to increase cardiac output (Q) by the same amount as with hypercapnia. Permissive hypercapnia increased Q by an average of 1.4 L·min⁻¹·m⁻², decreased arterial oxygen tension from 109 ± 10 mm Hg to 92 ± 11 mm Hg (p < 0.05), markedly increased true shunt (Qo/Qs), from 32 ± 6% to 48 ± 5% (p < 0.0001), and had no effect on the dispersion of A-Qp/Qs. On reinstatement of baseline Vt with maintenance of a high Q, Q/Qt remained increased, to 38 ± 6% (p < 0.05), and Pao2 remained decreased, to 93 ± 4 mm Hg (p < 0.05). These results agreed with effects of changes in Vt and Q predicted by the mathematical lung model of the MIGET. We conclude that permissive hypercapnia increases pulmonary shunt, and that deterioration in gas exchange is explained by the combined effects of increased Q and decreased alveolar ventilation.

We applied to 20 paralyzed ventilated children (0.15 to 14.3 yr, six with acute respiratory distress syndrome (ARDS)) the low-flow inflation (LFI) technique providing quasi-static volume-pressure (V-P) curves and compared the assessment of overdistension (OD) on dynamic and LFI (reference) inspiratory V-P curves. Dynamic curves were obtained at the airway opening during regular constant flow ventilation (Servo 300). Then LFI curves were obtained. Two analyses were performed: First, the nonlinear coefficient c of a second order polynomial equation (SOPE) fitted to dynamic data obtained during constant flow was compared with the c of SOPE fitted to LFI curve (within tidal volume [Vt]). Second, the dynamic C20/C (ratio of compliance of the last 20% of the curve (C20) to total compliance [C]) was compared with the determination of the upper inflection point (UIP) on the LFI curve. OD was defined as a negative value of c, a C20/C < 0.80, an UIP included within the Vt range for that child during regular ventilation. Using LFI V-P curves as reference, SOPE offered a better detection of OD than dynamic C20/C or the determination of the UIP by graphical means. Indeed, the first analysis showed a substantial agreement (κ = 0.75) between dynamic c and LFI c detection of OD whereas the second analysis showed a poor agreement (κ = 0.22) between C20/C and LFI detection of the UIP. In conclusion, quasi-static V-P curves can easily be obtained in children with the LFI technique, SOPE offers a good detection of OD on dynamic and LFI V-P curves but the C20/C index seems to be an inadequate measure of OD.

Obstruction at the airway anastomosis is a recognized complication of adult-heart-lung transplantation (HLT) and lung transplantation (LT). Data for pediatric transplantation have been scarce. We reviewed our experience in pediatric HLT and LT to determine the frequency of airway complications and to document the therapeutic modalities used for their treatment. Fifty-three patients (median age: 13.8 yr; range: 1.3 to 28.2 yr) underwent HLT (n = 25), SLT (n = 3), DLT (n = 25), or repeat DLT (n = 3) and survived for more than 72 h. Major anastomotic airway complications requiring intervention affected one of the 25 HLT (4%) and seven of the 28 LT (SLT + DLT) patients (25%) (p = 0.05). Four patients with granulation tissue occluding the airway were treated with forceps resection, laser ablation, or balloon dilatation. Three patients with fibrotic strictures received silicone stents, laser ablation, or balloon dilatation. Two patients with bronchomalacia or diffuse strictures below the anastomosis underwent metal stent placement. Five of seven patients who were treated for anastomotic complications had satisfactory relief of airway obstruction. As compared with previously studied adults, pediatric heart-lung transplant recipients had the same or a lower frequency, and pediatric lung transplant recipients had a higher frequency of major anastomotic airway complications. A variety of treatment modalities were necessary to achieve adequate relief of airway obstruction.

Our purpose was to compare the effectiveness and side effects of a novel, single-piece mandibular advancement device (OSA-Monobloc) for sleep apnea therapy with those of a two-piece appliance with lateral Herbst attachments (OSA-Herbst) as used in previous studies. An OSA-Monobloc and an OSA-Herbst with equal protrusion were fitted in 24 obstructive sleep apnea patients unable to use continuous positive airway pressure (CPAP) therapy. After an adaptation period of 156 ± 14 d (mean ± SE), patients used the OSA-Monobloc, the OSA-Herbst, and no appliance in random order, using each appliance for 1 wk. Symptom scores were recorded and sleep studies were done at the end of each week. Several symptom scores were significantly improved with both appliances, but to a greater degree with the OSA-Monobloc. Epworth Sleepiness Scale scores were 8.8 ± 0.7 with the OSA-Herbst, and 8.5 ± 0.8 with the OSA-Monobloc devices, and 13.1 ± 0.9 without therapy (p < 0.05 versus both appliances). The apnea/hypopnea index was 8.7 ± 1.5/h with the OSA-Herbst and 7.9 ± 1.6/h with the OSA-Monobloc device, and 22.6 ± 3.1/h without therapy (p < 0.05 versus both appliances). Side effects were mild and of equal prevalence with both appliances. Fifteen patients preferred the OSA-Monobloc, eight patients had no preference, and one patient preferred the OSA-Herbst device (p < 0.008 versus OSA-Monobloc). We conclude that both the OSA-Monobloc and the OSA-Herbst are effective therapeutic devices for sleep apnea. The OSA-Monobloc relieved symptoms to a greater extent than the OSA-Herbst, and was preferred by the majority of patients on the basis of its simple application.
The New Ventilator Management: Permissive Hypercapnia and Other Variations on Conventional Mechanical Ventilation
Outlines techniques and theories, including pressure-limited ventilation, reduced peak pressure, permissive hypercapnia, weaning and imposed work of breathing, and the next generation of ventilators. Featuring Neil R. MacIntyre, MD, FAARC, and Richard D. Branson, BA, RRT, FAARC. 90-min. videotape.
Item VC46 $49.95 ($99.00 Nonmembers)

Managing the Mechanically Ventilated Patient: Chest Tubes, Aerosols, Endotracheal Tubes
Teaches how endotracheal tubes impose work and create infection risk, the efficacy of various systems, the indications, positioning issues, and drainage issues for chest tubes. Featuring Neil R. MacIntyre, MD, FAARC, and David J. Pierson, MD, FAARC. 90-min. videotape.
Item VC71 $49.95 ($99.00 Nonmembers)

Waveform Analysis and Interpretation
Discusses the clinical applications of the primary waveforms, the general kinds of information they provide, and how to use them to adjust the patient-ventilator interface. Featuring Jan O. Nilsestuen, PhD, RRT, FAARC, and Richard D. Branson, BA, RRT, FAARC. 90-min. videotape.
Item VC72 $49.95 ($99.00 Nonmembers)

Prevention and Management of Ventilator-Induced Lung Injury
Describes our current concepts of the pathophysiology of ventilator-induced lung injury. It also covers how to identify patients at risk of barotrauma and the approach to management of bronchopleural fistula in the ventilated patient. Featuring David J. Pierson, MD, FAARC, and Richard D. Branson, BA, RRT, FAARC. 90-min. videotape.
Item VC52 $49.95 ($99.00 Nonmembers)

Evaluates neonates in need of ventilation, assessment, and ventilator monitoring, and how to recognize the neonate in respiratory failure. Also provided are instructions for minimizing iatrogenic lung damage. Featuring Robert L. Chatburn, RRT, FAARC, and Richard D. Branson, BA, RRT FAARC. 90-min. videotape.
Item VC65 $49.95 ($99.00 Nonmembers)

Ventilators and Their Management
Item VC93 $49.95 ($99.00 Nonmembers)

Noninvasive Mechanical Ventilation: Its Role in Acute and Chronic Respiratory Failure
Describes the modalities currently available in noninvasive ventilation. Results of studies on acute and chronic respiratory failure are reviewed, and acceptable indications for use of noninvasive ventilation are described as is patient selection and techniques of initiation and monitoring of noninvasive ventilation. Featuring Nicholas S. Hill, MD, and Richard D. Branson, BA, RRT, FAARC. 90-min. videotape.
Item VC53 $49.95 ($99.00 Nonmembers)

The "Facts" about Pressure Control Ventilation
Addresses the indications, clinical advantages, initiation, management, and monitoring of pressure control ventilation (PCV). Focuses on patients benefiting from PCV and weaning strategies. By Donn Wemhoff, BS, RRT, CPFT. 40-min. audiotape.
Item PAD862 $15.00 ($20.00 Nonmembers)

Introduction to Mechanical Ventilation Waveform Interpretation
Teaches how to analyze pressure, flow, and/or compliance curves and recognize the need to monitor and modify mechanical ventilation appropriately. Covers all aspects of waveform interpretation in order to optimize patient care. Individual Independent Study Package. Softcover book.
Item PE13 $12.00 ($16.00 Nonmembers)

Call (972) 406-4663 or Fax to (972) 484-2720 with MasterCard, Visa, or Purchase Order Number.

ORDER COUPON

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
<th>Quantity</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Item Subtotal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shipping</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1x Sales tax</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHIPPING AND HANDLING FEES

Order Total	Ground	AK, HI, PR	International
$15 or less | $4.25 | $4.25 | $39.50
$15.01 to $25 | $5.25 | $14.00 | $64.00
$25.01 to $40 | $5.25 | $17.00 | $48.25
$40.01 to $60 | $6.25 | $19.25 | $52.50
$60.01 to $80 | $8.25 | $21.50 | $57.00
$80.01 to $100 | $9.25 | $23.75 | $65.00
$100.01 to $150 | $10.25 | $30.75 | $74.25
$150.01 to $200 | $12.25 | $33.00 | $78.50
$200.01 to $250 | $14.25 | $39.00 | $86.00
$250.01 to $300 | $16.25 | $44.00 | $95.75
$300.01 and up | $18.25 | $58.50 | $114.25

*International orders require an additional $15 for customs brokerage fee.

Mail to: AARC, 11030 Alps Lane, Dallas, TX 75239-4593
(972) 242-2273 • Fax (972) 484-2720

Visit www.aarc.org for all your respiratory information needs.
For other products visit www.aarc.org/professional_resources_keys.
ABSTRACTS

Biologically variable mechanical ventilation (Vbw)—using a computer-controlled to mimic the normal variability in spontaneous breathing improves gas exchange in a model of severe lung injury (Lefevre, G. R., S. E. Kowalski, L. G. Girling, D. B. Thiessen, W. A. C. Mutch. Am. J. Respir. Crit. Care Med. 1996;154:1567-1572). Improved oxygenation with Vbw, in the face of alveolar collapse, is thought to be due to net volume recruitment secondary to the variability or increased noise in the peak inspiratory airway pressures (Ppaw). Biologically variable noise can be modeled as an inverse power law frequency distribution (y approximately 1/f^a) (West, B. J., M. Shlesinger. Am. Sci.,1990;78:40-45). In a porcine model of atelectasis—right lung collapse with one-lung ventilation—we studied if Vbw (n = 7) better reinitializes the collapsed lung compared with conventional monotonously regular control mode ventilation (Vc; n = 7) over a 5-h period. We also investigated the influence of sigh breaths with Vc (Vs; n = 8) with this model. Reinitialization of the collapsed lung was significantly enhanced with Vbw—greater Pao2 (502 ± 40 mm Hg with Vbw versus 381 ± 40 mm Hg with Vc at 5 h; and 309 ± 79 mm Hg with Vc; mean ± SD); lower Paco2 (35 ± 4 mm Hg versus 48 ± 8 mm Hg and 50 ± 8 mm Hg), lower shunt fraction (9.7 ± 2.7% versus 14.6 ± 2.0% and 22.9 ± 6.0%); and higher respiratory system compliance (Crs) (1.15 ± 0.15 ml/cm H2O/kg versus 0.79 ± 0.19 ml/cm H2O/kg); at the mean PaO2 (157.7 ± 13.4 cm H2O) versus 18.8 ± 2.3 cm H2O and 18.9 ± 2.8 cm H2O). Vbw resulted in an 11% increase in measured tidal volume (Vnt) over that seen with Vc by 5 h (167.3 ± 1.2 ml/kg versus 13.2 ml/kg). The respiratory rate variability programmed for Vbw demonstrated an inverse power law frequency distribution (y approximately 1/f^a) with a = 1.6 ± 0.3. These findings provide strong support for the theoretical model of noisy end-inspiratory pressure better reinitializing atelectatic lung. Our results suggest that using natural biologically variable noise has enhanced the performance of a mechanical ventilator in control mode.

We investigated whether rubbing with an alcohol solution increases compliance with hand disinfection in a medical intensive care unit (MICU).

During a first period (P1), hand disinfection was achieved only through conventional washing, whereas during a second period (P2), hand disinfection could be achieved either through conventional washing or rubbing with an alcohol solution. There were 621 opportunities for hand disinfection during P1 and 905 opportunities during P2. General compliance during P1 was 42.4%, and reached 60.9% during P2 (p < 0.001). This improvement was observed among nurses (45.3% versus 66.7%, p < 0.001), senior physicians (37.2% versus 55.5%, p < 0.001), and residents (46.9% versus 59.1%, p = 0.03). Acceptability and tolerance were evaluated through the answers to an anonymous questionnaire distributed to all 53 healthcare workers in the MICU. Rubbing with alcohol solution was an easy procedure (100% of responses) and induced mild side effects in less than 10% of respondents. In a complementary study conducted 3 mo after the first one, compliance remained better than during P1 (51.3% versus 42.4%, p = 0.007). These findings suggest that rubbing with alcohol solution increases compliance with hand disinfection, and that it could be proposed as an alternative to conventional handwashing in the MICU.

Preeclampsia is the predominant cause of admissions to neonatal intensive care. The diurnal blood pressure pattern is flattened or reversed in preeclampsia. We hypothesized that snoring and partial upper airway obstruction contribute to nocturnal rises in blood pressure. We tested this hypothesis by controlling sleep-induced upper airway flow limitation and snoring with nasal positive pressure. Eleven women with preeclampsia underwent 2 consecutive polysomnographic sleep studies with simultaneous beat-to-beat blood pressure monitoring. Average blood pressure for the night overall and in each sleep stage was calculated. Sleep architecture was similar on the two study nights. Sleep-induced partial upper airway flow limitation occurred in all patients in the initial study. A subset of nasal continuous positive airway pressure (CPAP) applied at a mean maximal pressure of 6 ± 1 cm H2O eliminated flow limitation throughout sleep on the treatment night. Blood pressure was markedly reduced on the treatment night [118 ± 3]/(73 ± 3) when compared with the initial nontreatment study night [146 ± 6]/(92 ± 4), p = (0.007)/(0.002). We conclude that partial upper airway obstruction during sleep in women with preeclampsia is associated with increments in blood pressure, which can be eliminated with the use of nasal CPAP.
Tracheal Gas Insufflation:
Current Status and Future Prospects

A Special Issue

containing the papers from a conference held
August 19, 2000, in Dallas, Texas

This conference was made possible by educational grants to the
American Respiratory Care Foundation
from:

Fisher & Paykel Healthcare Inc
Kimberly-Clark/Ballard Medical Products
Mallinckrodt Inc
Respirronics Inc
SensorMedics
Valley Inspired Products

Faculty

Alexander B Adams MPH RRT FAARC—St Paul, Minnesota
Lluis L Blanch MD PhD—Sabadell, Spain
Edgar Delgado RRT—Pittsburgh, Pennsylvania
Dean R Hess PhD RRT FAARC—Boston, Massachusetts*
Michael A Gillette MD PhD—Boston, Massachusetts
Robert M Kaemarek PhD RRT FAARC—Boston, Massachusetts
Karl A Hultquist RRT—Portland, Oregon
Neil R MacIntyre MD FAARC—Durham, North Carolina*
Avi Nahum MD—St Paul, Minnesota

*Conference Co-Chairs
Tracheal Gas Insufflation

On August 19, 2000, the American Association for Respiratory Care (AARC) convened a state-of-the-art conference in Dallas, Texas, to review the technique tracheal gas insufflation (TGI). The topic is particularly relevant at this time for several reasons. First, with the recent publication of the Acute Respiratory Distress Syndrome Network Ventilator Management Trial, showing that reduced lung distention during mechanical ventilation improved mortality, a dramatic increase in interest in “lung-protective ventilatory strategies” has developed. The potential ability of TGI to reduce dead space (and thus tidal volume) has thus become a conceptually attractive adjunct to ventilator management. Second, several investigators with industry backing are actively developing TGI systems. However, optimal design features, required monitoring capabilities, regulatory requirements, and various cost issues for these devices remain ill defined. Third, because so few clinical trials have been done using TGI, clinician awareness of the TGI concept seems lacking.

To address these issues, the American Association for Respiratory Care convened a unique collection of scientists, clinicians, industry representatives, and regulatory experts for this one-day conference. Speakers were charged to address specific issues on TGI, including design characteristics, safety/monitoring features, regulatory requirements, potential study designs, clinical applicability, and cost issues. Industry sponsors sent invited responders to ask questions and interact in discussions. The conference concluded with an interactive session addressing the barriers to the clinical implementation of TGI.

The proceedings of this conference comprise this special issue of Respiratory Care. We hope that readers of this issue will better understand TGI’s potential role, as well as its potential problems, and also what needs to be done for it to enter clinical practice.

Neil R MacIntyre MD FAARC
Dean R Hess PhD RRT FAARC
Conference Co-Chairs

REFERENCE

Tracheal Gas Insufflation and Related Techniques to Introduce Gas Flow into the Trachea

Dean R Hess PhD RRT FAARC and Michael A Gillette MD PhD

Introduction
Continuous Insufflation of Oxygen
Transtracheal Oxygen Administration
Transtracheal Jet Ventilation
High Frequency Jet Ventilation
Intratracheal Pulmonary Ventilation
Tracheal Gas Insufflation
Summary

Over the past 50 years, a variety of techniques have been developed that have in common the insufflation of gas into the central airway to facilitate carbon dioxide (CO₂) clearance. These include continuous insufflation of oxygen, transtracheal jet ventilation, high frequency jet ventilation, transtracheal oxygen administration, intratracheal pulmonary ventilation, and tracheal gas insufflation (TGI). Continuous insufflation of oxygen is a technique used to enhance CO₂ removal in the presence of apnea. Transtracheal jet ventilation and high frequency jet ventilation promote bulk gas flow into the lungs. Some techniques, such as transtracheal oxygen administration, provide insufflation of oxygen as an adjunct to spontaneous ventilation. However, other techniques, such as TGI, are used as an adjunct to positive pressure ventilation. Intratracheal pulmonary ventilation provides positive pressure ventilation while bypassing the upper airway. Although some of these techniques are promising adjuncts to mechanical ventilation and may help reduce ventilator-associated lung injury, much remains to be learned about their role in the care of patients with acute lung injury.

Key words: tracheal gas insufflation, transtracheal oxygen, transtracheal jet ventilation, high-frequency jet ventilation, intratracheal pulmonary ventilation, mechanical ventilation. [Respir Care 2001;46(2):119–129]

Introduction

Over the past 50 years, various techniques have been described that use a catheter to introduce a flow of gas into the trachea. These have in common a desire to enhance lung function by augmenting the clearance of carbon dioxide. A recent renaissance of interest in these approaches has been spurred by the conjoint observations that overdistention of the lungs during positive pressure ventilation (PPV) can induce lung injury and that ventilatory strategies that promote lung protection result in improved morbidity and mortality. Since lung-protective strategies compromise ventilation, they may be facilitated by tech-
niques that enhance carbon dioxide (CO₂) clearance and thereby reduce the ventilatory requirement. In this paper, we describe various techniques that have been used to introduce gas flow into the trachea.

Continuous Insufflation of Oxygen

Apneic oxygenation is a technique in which the subject is hyperoxygenated by ventilation with 100% oxygen, and then has ventilation interrupted. During the ensuing period of apnea, arterial partial pressure of oxygen (PₐO₂) is maintained above normal because of the very high PₐCO₂ at the initiation of apnea. The duration of apneic oxygenation is limited not by the decline in PₐO₂, but rather by the rise in arterial partial pressure of carbon dioxide (PₐCO₂). In 1961, Eger and Severinghaus reported the rate of rise in alveolar partial pressure of carbon dioxide (PₐCO₂) in 5 healthy apneic anesthetized adult patients. In the first minute of apnea there was a rapid rise in PₐCO₂ as the alveolar PₐCO₂ equilibrated with the mixed venous PₐCO₂. This was followed by a linear rise in PₐCO₂ determined by the rate of tissue CO₂ production. The slope of the increase in PₐCO₂ was 4 mm Hg/min without prior hyperventilation. The increase in PₐCO₂ was less with prior hyperventilation, occurring at a rate of 3 mm Hg/min. At this rate of PₐCO₂ increase, the duration of apneic oxygenation was limited by the concomitant respiratory acidosis. From these and other studies published from the mid-1950s to the early 1970s, it was established that the rate of rise in PₐCO₂ during apnea in humans is about 3–5 mm Hg/min. It has been known for 50 years that continuous insufflation of oxygen (CIO) into the trachea or bronchi of experimental animals can slow the rate of PₐCO₂ increase during apneic oxygenation. In 1951, Jacoby et al reported that tracheal insufflation at 15 L/min slowed the rise in PₐCO₂ in apneic dogs. In the 1980s there were a number of published studies evaluating this technique in animal models. With two catheters, one positioned 3.5 cm into each bronchus (Fig. 1), and a total flow of 40 L/min (20 L/min to each catheter), dogs can be maintained eucapnic during apnea. This outcome has been attributed to the combined effects of convective streaming in the central airways due to the catheter flow and cardiogenically induced flow in the peripheral airways with molecular diffusion. Slutsky et al studied insufflation of low flow (≤ 3 L/min) oxygen 1 cm proximal to the carina in apneic dogs. They reported that the rate of increase in PₐCO₂ decreased over time and reached a plateau at 2 hours (Fig. 2). The studies were stopped at 4–5 hours, with no dogs showing signs of cardiovascular or other compromise. However, PₐCO₂ reached a level in excess of 160 mm Hg, associated with pH < 6.9 and PₐO₂ > 350 mm Hg.

The first report of CIO in humans was by Comroe and Dripps in 1946. They used tracheal flows of 6–11 L/min in two comatose patients and reported that PₐCO₂ reached > 300 mm Hg before arterial oxygen desaturation occurred! Babinski et al used CIO in 5 adult apneic patients prior to operative procedures. Endobronchial catheters (Fig. 3) were placed and a total oxygen flow of 0.6–0.7 L/kg/min was divided between the two catheters. Over 30 minutes, PₐCO₂ rose from approximately 35 mm Hg to 55 mm Hg in 4 of the patients, remaining normal in one patient. Breen et al delivered flows of 0.9–1.6 L/kg/min to the bronchi of apneic anesthetized patients, and reported an increase in PₐCO₂ over 30 minutes, from about 35 mm Hg to about 70 mm Hg. Perl et al insufflated 0.5 L/kg/min to the distal tip of a Carlen’s tube in 5 apneic patients. They reported a 30% reduction in rate of increase of PₐCO₂ compared to apneic oxygenation alone (Fig. 4).

Hypoxemia is a recognized complication of endotracheal suctioning. Most commonly, this complication is avoided by pre-oxygenation with 100% oxygen and limitation of procedure duration. CIO during suctioning has been suggested as an alternative method to prevent suctioning-related hypoxemia. Smith et al evaluated a double-lumen suction catheter, with oxygen insufflation through one lumen alternating with suction through the other. With this technique, they were able to prevent hypoxemia during suctioning without pre-oxygenation. Brochard et al evaluated CIO during suctioning using a specially designed endotracheal tube incorporating five 0.7 mm diameter capillaries into its wall. Gas from these capillaries exits 1 cm from the distal tip of the tube. Oxygen insufflation at 12 L/min minimized arterial desaturation during suctioning in severely hypoxic patients with acute respiratory failure (ARF). Further, the decline in lung vol-
Fig. 2. Effect of tracheal insufflation of oxygen at 2 L/min in dogs. Note that the arterial partial pressure of oxygen (Pao2) remains high, that the arterial partial pressure of carbon dioxide (Paco2) reaches a plateau with oxygen insufflation, and that the Paco2 rises with a rapid slope without oxygen insufflation. (From Reference 19, with permission.)

Fig. 3. Gas delivery system for continuous insufflation of oxygen in human subjects. (From Reference 4, with permission.)

ume that typically occurs with suctioning was ameliorated by use of oxygen insufflation. Although potentially beneficial, oxygen insufflation during suctioning has not become popular, probably because the closed suction system is commonly employed to minimize suction-related complications.

The necessity of ventilation during cardiopulmonary resuscitation (CPR) has been questioned. Hallstrom et al recently reported that the outcome after CPR with chest compressions alone was similar to that after chest compressions with mouth-to-mouth ventilation. Several studies have evaluated the use of CIO during CPR. In a canine model of cardiac arrest, Branditz et al showed that hypercapnia did not occur and that arterial oxygen saturation was maintained using 15 L/min of transtracheal oxygen. Brochard et al studied CIO at 15 L/min through an endotracheal tube in a porcine model of cardiac arrest. They noted similar Paco2 and Paco2 with either standard CPR or oxygen insufflation CPR, the latter including chest compressions and insufflated oxygen without additional ventilation. Further, they found oxygen insufflation CPR led to improved hemodynamics relative to standard CPR. Saissi et al recently evaluated CIO during out-of-hospital CPR. Cardiac-arrested patients were randomized to stan-
dard CPR or CIO plus chest compressions. They reported similar rates of successful resuscitation and levels of 9,BO, and 9,CO, between the groups. CIO was provided through a specialized endotracheal tube with lateral channels in its wall allowing insufflation of oxygen at 15 L/min.

CIO has been studied as a technique to facilitate the determination of brain death in adults. It is commonly recommended that 6 L/min of 100% oxygen be administered through a catheter placed at the level of the carina during this procedure to maintain adequate oxygenation. With a starting 9,CO, of 40 mm Hg and pre-oxygenation with 100% oxygen, the expected rise in 9,CO, after initiation of apnea is 3–6 mm Hg/min (depending on tissue CO, production).

There are several reasons why CIO has not become widely accepted in the care of critically ill patients. Although this technique slows the rise in 9,CO,, it does not provide adequate CO, clearance. This leads to the relatively rapid onset of unacceptable respiratory acidosis. Unlike the animals in which this technique has been studied, critically ill patients often are hypermetabolic and have elevated alveolar dead space, respectively increasing CO, production and decreasing CO, clearance. To maximize effective CO, clearance in CIO, high flows must be insufflated, producing the potential for airway injury. Critically ill patients also suffer elevated intrapulmonary shunt and require airway pressures greater than those provided by CIO alone in order to prevent alveolar derecruitment. Combined constant-flow and continuous PPV has been described, but only in an animal model. The use of CIO is thus effectively limited to relatively short-term applications such as apnea testing to establish brain death, airway suctioning, or CPR.

![Diagram](image1)

Fig. 4. Partial pressure of oxygen (P,O,) and partial pressure of carbon dioxide (P,CO,) with (closed circles) and without (open circles) continuous insufflation of oxygen in 5 patients during anesthesia. (From Reference 11, with permission.)

![Diagram](image2)

Fig. 6. Representative tracings of pleural pressure (Ppl) in a patient breathing room air with no transtracheal flow (top graph), while receiving transtracheal oxygen (middle graph), and while receiving transtracheal air (bottom graph). (From Reference 42, with permission.)

![Diagram](image3)

Fig. 7. Technique of percutaneous transtracheal jet ventilation. The needle is directed through the cricothyroid membrane (A), its position in the trachea is verified (B), and transtracheal ventilation is provided using a manual trigger (C). (From Reference 47, with permission.)

![Diagram](image4)

Fig. 5. Effect of transtracheal air on inspired minute ventilation of 7 patients. (From Reference 41, with permission.)

![Diagram](image5)

Fig. 6. Representative tracings of pleural pressure (Ppl) in a patient breathing room air with no transtracheal flow (top graph), while receiving transtracheal oxygen (middle graph), and while receiving transtracheal air (bottom graph). (From Reference 42, with permission.)

![Diagram](image6)

Fig. 7. Technique of percutaneous transtracheal jet ventilation. The needle is directed through the cricothyroid membrane (A), its position in the trachea is verified (B), and transtracheal ventilation is provided using a manual trigger (C). (From Reference 47, with permission.)
Transtracheal Oxygen Administration

Transtracheal oxygen administration delivers gas directly into the trachea via a small percutaneous catheter. A principal advantage of transtracheal oxygen administration is its efficiency, allowing a reduction in flow and concomitant decrease in the cost of oxygen therapy. Even in the initial reports of transtracheal oxygen use, it was recognized that patients also frequently reported less dyspnea. What was not initially recognized was that this was due to enhanced clearance of CO₂ from the upper airway—a transtracheal gas insufflation (TGI) effect.

Bergofsky and Hurewitz studied 5 patients who had chronic hypercapnia and permanent tracheostomies, in whom 5 L/min of gas was delivered through an otherwise occluded tracheostomy tube. They reported a significant reduction in dead space and inspired minute ventilation using this method. In one patient the effect was so dramatic that the patient requested long-term application of the technique. In a follow-up investigation, Hurewitz et al studied patients with transtracheal oxygen catheters and reported that increases in oxygen flow from 1–8 L/min produced progressive decreases in dead space volume, tidal volume (Vₜ), and inspired minute ventilation.

Couser and Make studied 7 patients receiving oxygen therapy via transtracheal catheter. As the transtracheal oxygen flow increased, inspired minute ventilation decreased; at 6 L/min inspired minute ventilation was reduced by approximately 50%. To demonstrate that this effect was due to gas flow and not to oxygen supplementation, transtracheal air was substituted for oxygen with a similar reduction in minute ventilation (Fig. 5). Benditt et al studied 5 patients receiving transtracheal oxygen therapy and reported that the tension-time index of the diaphragm decreased as transtracheal flow of oxygen or air increased (Fig. 6). These data are consistent with a reduced ventilatory requirement with transtracheal gas flow, presumably due to a reduction in dead space.

Transtracheal oxygen insufflation has also been used for the treatment of obstructive sleep apnea. In 5 patients with tracheostomies placed for the treatment of severe obstructive sleep apnea, Schneider et al found that 15 L/min of transtracheal oxygen insufflation stabilized the breathing pattern by providing sufficient air flow for the patients to inspire during upper airway obstruction. They also reported that this flow resulted in laryngeal obstruction during transitional sleep, which could result in high tracheal pressure unless a pressure pop-off is used.

Transtracheal Jet Ventilation

Percutaneous transtracheal jet ventilation (TTJV) is a technique in which a large intravenous catheter is inserted through the cricothyroid membrane and ventilation is pro-

Fig. 8. Commercially available equipment for transtracheal jet ventilation: ACU 1060.1 transtracheal catheter (left) and BE 183-SUR manual jet ventilator (right). (Courtesy of Instrumentation Industries, Bethel Park, Pennsylvania.)

Fig. 9. High frequency jet ventilation. The jet effect at the proximal airway entrains flow from a secondary gas source. The tidal volume delivered is the combination of the primary jet flow and the entrained gas flow. (From Reference 51, with permission.)
Provided from a high-pressure gas source36,47 (Fig. 7). In addition to a 50 psi gas source and a 14–16 gauge catheter, the TTJ system requires low-compliance connecting tubing and a valve to control flow time to the catheter.36,47

Valve systems are commercially available (Fig. 8). The chief advantage of TTJV is that it is quicker and simpler than percutaneous cricothyroidotomy. A syringe containing 10 mL of saline is attached to the catheter, which is advanced through the cricothyroid membrane into the tracheal lumen. Free return of air confirms catheter tip position. The catheter is advanced over the introducer needle into the trachea and attached to the flow-controlling valve. The catheter is held in place manually to avoid displacement. Ventilation is provided at a rate of 12–20 cycles per minute.

Flow through a 16-gauge catheter at a driving pressure of 50 psi is about 500 mL/s. Because of the high velocity of gas exiting the catheter in the trachea, additional flow may be entrained from the upper airway. The peak inspiratory pressure during TTJV depends on the cross-sectional area of the trachea, the length and diameter of the catheter, the degree of upper airway obstruction, the compliance of the respiratory system, and the inspiratory time. Because exhalation occurs through the upper airway, complete up-

Fig. 10. The reverse-thrust catheter used for intratracheal pulmonary ventilation (ITPV). During inspiration (left) the expiratory valve is closed and thus all of the gas flow is directed into the lungs. During expiration (right), the expiratory valve is open and the catheter flow and expiratory flow from the patient’s lungs are expired simultaneously through the endotracheal tube. (From Reference 64, with permission.)

Fig. 11. A simple circuit for tracheal gas insufflation. (From Reference 71, with permission.)

Fig. 12. With no tracheal gas insufflation (TGI) (left), the central airways contain CO\textsubscript{2} at end-expiration and this CO\textsubscript{2} is delivered to the alveoli during the subsequent inspiration. With TGI (right), the CO\textsubscript{2} from the central airways is flushed during the expiratory phase, which reduces the CO\textsubscript{2} delivered to alveoli during the subsequent inspiration. (From Reference 72, with permission.)

124
per airway obstruction is a contraindication to TTJV. Reported complications of TTJV are infrequent; they include hemorrhage at the insertion site, subcutaneous and mediastinal air, esophageal injury, and pneumothorax. 45

Patel 46 reported 5 years' experience with TTJV in 29 patients. Two important benefits of TTJV were suggested. First, TTJV provided adequate oxygenation, allowing time for definitive airway management. Second, TTJV improved visualization of the glottic aperture, thereby promoting subsequent translaryngeal intubation.

High Frequency Jet Ventilation

High-frequency jet ventilation (HFJV) is a form of life support in which high velocity jets of gas are injected into the airway at frequencies higher than those used with conventional ventilators (100–660 per minute). 43,50 The driving pressure applied to the jet is typically 35–50 psi. This technique was originally applied using a specialized endotracheal tube incorporating a lumen designed to permit passage of the gas stream. Because of the undesirability of reintubating critically ill patients, techniques allowing the jet stream to be applied to the proximal endotracheal tube were subsequently introduced. The volume of gas delivered through the jet is relatively small (2–5 mL/Kg). However, because of the high velocity at which gas exits the jet, additional gas is entrained (Fig. 9), resulting in estimated V_T of 3–5 mL/Kg. The construction of these jet ventilation devices virtually precludes measurement of exact V_T. With HFJV, alveolar ventilation depends on the driving pressure to the jet, jet frequency, inspiratory-to-expiratory ratio, and overall pulmonary mechanics.

The efficacy of HFJV for patients with acute respiratory distress syndrome has been disappointing. Carlon et al 52 reported that HFJV provided no better oxygenation and ventilation than conventional techniques. Further, survival was not improved with the use of HFJV. Gluck et al 51 reported improved gas exchange and reduced airway pressure during a 24-hour trial of HFJV. As this study was uncontrolled, however, it is impossible to know whether similar effects could have been achieved with conventional ventilation. In addition, the short-term nature of the study prevented assessment of such important outcomes as survival.

Although HFJV has been virtually abandoned in the adult intensive care unit, it is used occasionally in neonates and in the operating room. In many neonatal intensive care units, high-frequency oscillatory ventilation is now used in place of HFJV. In the operating room, HFJV is used during head and neck surgery, allowing the patient to be oxygenated and ventilated without a large endotracheal tube obscuring the airway. 53

Concerns related to HFJV include adequate humidification of the jet gas flow 54 and intrinsic positive end-expiratory pressure due to the short expiratory time. 55 Tracheal injury following HFJV in neonates has been reported. 56–58

Intratracheal Pulmonary Ventilation

Intratracheal pulmonary ventilation (ITPV) is a technique that introduces a continuous-flow catheter into the endotracheal tube. 59–63 The distal tip of the catheter is positioned about 1 cm from the carinal tip of the endotracheal tube. A unique, reverse-thrust catheter design allows gas exiting the distal end of the catheter to be directed cephalad (Fig. 10). The exhalation port of the endotracheal tube is attached to the ventilator. When the exhalation valve is closed, flow is delivered into the distal lungs. When the exhalation port is open, the reverse-thrust catheter entrains gas from the distal airways to facilitate exhalation.

The objective of ITPV is to reduce V_T and thus alveolar distending pressure. This may be achieved by several mechanisms associated with this technique. First, the V_T is delivered directly into the trachea, bypassing the proximal dead space. Second, the proximal dead space is flushed during the expiratory phase. Third, the jet effect of the reverse-thrust catheter facilitates gas flow from the distal lungs. An additional effect of ITPV that has been reported is augmented clearance of mucus from the inner lumen of the endotracheal tube. 65 Most ITPV research has occurred in animal models. 60,62,64,66 The reported human experience has been limited primarily to neonatal and pediatric patients. 67–69 although its use for patients with acute respiratory distress syndrome has been recently reported. 63
The future role of ITPV in adult patients with ARF remains to be determined.59-71

\textbf{Tracheal Gas Insufflation}

TGI is the injection of fresh gas into the central airways for the purpose of improving the efficiency of alveolar ventilation and/or minimizing the ventilatory requirement.71,72 It is used as an adjunct to mechanical ventilation. A catheter is placed into the central airway proximal to the carina (Fig. 11). Flow is introduced through the catheter to flush the proximal airways of CO\textsubscript{2}-laden gas (Fig. 12). The result is less CO\textsubscript{2} rebreathing on the subsequent inspiration, which effectively lowers the dead space. TGI has been studied extensively in lung models73-75 and animals.76,77 In recent years there have been an increasing number of reports of the use of TGI for patients with ARF.79-87 As it has become more widely recognized that alveolar overdistention during mechanical ventilation may result in increased morbidity and mortality,88 there is considerable academic and clinical interest in TGI as a technique to reduce the ventilatory requirement of patients with ARF.

A variety of approaches to TGI have been reported. The catheter can be introduced into the trachea either beside the endotracheal tube or through the endotracheal tube, or can be incorporated into the endotracheal tube design. Catheters can introduce flow either toward the carina or away from the carina (retrograde or reverse-thrust catheters). The flow can be continuous throughout the respiratory cycle, restricted to the expiratory phase (Fig. 13), or constrained to a specific portion of the expiratory phase. Regardless of the approach that is used, a concern with the use of TGI is the interaction between the TGI flow and the ventilator.71

A recently described alternative to TGI is aspiration of airway dead space—tracheal gas exsufflation (TGE).98 With this technique, airway dead space gas is aspirated from the distal endotracheal tube and replaced by fresh gas from the ventilator circuit. Potential advantages of this approach are elimination of TGI-related problems such as airway injury due to jet streams from the catheter and difficulties with humidification of the TGI gas flow. Takahashi et al99 described the effects of combined TGE and TGI, in which TGE is applied early in the expiratory phase and TGI is applied late in the expiratory phase (Fig. 14). In a lung model and in experimental animals, they reported that combining TGE and TGI allowed precise control of end-expiratory lung volume and effective CO\textsubscript{2} elimination.

\textbf{Summary}

A variety of techniques have been developed that have in common the insufflation of gas into the central airway to facilitate CO\textsubscript{2} clearance. Some of these techniques are
used to enhance CO₂ removal in the presence of apnea (eg., CIÖ). Others are used to promote bulk gas flow in the lungs (eg., TTJV and HJIV). Some are used as an adjunct to spontaneous ventilation (eg., transtracheal oxygen administration), whereas others are used as an adjunct to PPV (eg., TGI). Some provide PPV while bypassing the upper airway (eg., ITPV). Although some of these techniques are promising adjuncts to mechanical ventilation and may help reduce ventilator-associated lung injury (eg., TGI), much remains to be learned about their role in the care of patients with acute lung injury.

REFERENCES

Ventilator-Induced Lung Injury and the Evolution of Lung-Protective Strategies in Acute Respiratory Distress Syndrome

Michael A. Gillette MD PhD and Dean R. Hess PhD RRT FAARC

Introduction
Pathophysiology of Acute Respiratory Distress Syndrome
Traditional Mechanical Ventilation in Acute Respiratory Distress Syndrome: Strategies and Complications
Conventional Barotrauma
Systemic Gas Embolization
Ventilator-Induced Lung Injury
Normal Lungs
"Barotrauma" versus "Volutrauma"
Injured Lungs
Inflammatory Mediators
Low Tidal Volume Injury and Positive End-Expiratory Pressure
Contemporary Mechanical Ventilation in Acute Respiratory Distress Syndrome
Lung Protection and Permissive Hypercapnia
Physiologic Consequences of Permissive Hypercapnia
Clinical Consequences of Permissive Hypercapnia
Mortality Benefits of Low Tidal Volume Ventilation and Permissive Hypercapnia in Acute Respiratory Distress Syndrome
Respiratory Management in Acute Respiratory Distress Syndrome:
A Role for Tracheal Gas Insufflation?
Beyond Acute Respiratory Distress Syndrome

Summary

Traditional ventilator management of acute respiratory distress syndrome (ARDS), emphasizing normalization of blood gases, promoted high rates of conventional barotrauma. Research revealed a broader range of ventilator-induced lung injury, physiologically and histopathologically indistinguishable from ARDS itself. It is now known that overdistention and cyclic inflation of injured lung can exacerbate lung injury and probably promote systemic inflammation, effects minimized by low tidal volumes/plateau pressures and by application of positive end-expiratory pressure. No compelling data suggest a safe interval for nonprotective ventilation in humans; historically defined "low" tidal volumes may remain excessive for certain patients. Protective ventilation, however, entails carbon dioxide accumulation ("permissive hypercapnia"). Despite extensive study, debate remains, even over whether consequent respiratory acidosis is harmful, tolerable with physiologic adaptation, or intrinsically adaptive. Its gross systemic effects seem generally tolerated by critically ill patients; however, subsets, including those with ischemic heart disease, left or right heart failure, pulmonary hypertension, or cranial injury, may be at higher risk. In controlled trials demonstrating mortality benefit from lung-protective ventilation, acidosis was more tightly controlled than in negative studies. Decreased acidosis-associated dyspnea probably explains reduced use of sedatives and paralytics noted in those trials. There may thus be disparate goals in ARDS management: rapid institution of a restrictive ventilatory strategy, and avoidance of significant acidosis. We review data pertaining to ARDS physiology, ventilator-induced lung injury, lung-protective ventilatory strategies, and the physiology of respiratory acidosis. Tracheal gas insufflation is considered as a means to reconcile the clinical goals of ventilatory reduction and control of acidosis.

Key words: tracheal gas insufflation, ventilator-induced lung injury, barotrauma, volutrauma, mechanical ventilation, acute respiratory distress syndrome, ARDS, respiratory acidosis, permissive hypercapnia. [Respir Care 2001;46(2):130–148]
Introduction

Tracheal gas insufflation (TGI) has been proposed as an adjunct to mechanical ventilation, especially in clinical settings demanding a low tidal volume (V_t) "lung-protective" approach, in which carbon dioxide accumulation is an issue. Concerns over ventilator-induced lung injury and lung-protective ventilatory strategies are particularly relevant to the management of acute respiratory distress syndrome (ARDS). This article reviews the evidence in support of evolving lung-protective strategies, with special reference to ARDS, and examines the clinical importance of permissive hypercapnia. Additional applications of TGI to clinical care are also considered.

Pathophysiology of Acute Respiratory Distress Syndrome

The appellation "respiratory distress syndrome" was first applied to adults by Ashbaugh et al in 1967. Although it had been recognized for decades that profound physiologic disturbances such as trauma, sepsis, and pancreatitis could lead to severe pulmonary pathology, it was not until Ashbaugh's landmark study that the process was recognized as a discrete entity with clinical and pathologic features closely reminiscent of those in infantile respiratory distress syndrome. Manifestations in the original description included "severe dyspnea, tachypnea, cyanosis refractory to oxygen therapy, loss of lung compliance, and diffuse alveolar infiltration seen on chest x-ray." Initial ventilator support was pressure-cycled, but this approach "would not deliver adequate volumes at the high pressures required," and subsequent support was volume-cycled. On the respiratory support strategy adopted by Ashbaugh, only 4 of 12 patients had arterial partial pressure of carbon dioxide (P_ACO_2) > 45 mm Hg; the highest P_ACO_2 measured was 63 mm Hg. Overall mortality was 58%. Notably, the single therapeutic intervention beyond general supportive care that appeared to be helpful was the application of positive end-expiratory pressure (PEEP).

Thirty-four years later, Ashbaugh's initial description remains remarkably apt. While the diagnostic requirements of ARDS have been only slightly refined, the pathophysiologic derangements have become substantially better characterized over the intervening decades (Fig. 1). The proximal inciting event appears to be pulmonary vascular endothelial injury by inflammatory mediators, radical oxygen species, and other toxic substances elaborated by activated inflammatory cells. Positron emission tomography scanning suggests that this increased vascular permeability may initially be relatively uniform throughout the lung. Alveolar capillary membrane disruption leads to accumulation of proteinaceous noncardiogenic edema fluid in the air spaces, a histopathologic picture referred to as diffuse alveolar damage. Secondary surfactant dysfunction further impairs gas exchange. Edematous lung promotes collapse of dependent lung units. Thus, while the plain radiographic picture, like the positron emission tomography scan, shows a diffuse bilateral process, higher resolution computed tomography scans reveal marked underlying heterogeneity, with areas of consolidation, particularly in dependent regions, interspersed with areas of normal-appearing lung. If unchecked, the process can progress to a fibroproliferative phase, marked by irregular collagen deposition and permanent loss of compliance. Overall mortality from ARDS remains high, ranging from 40% to 50% in most studies.

Important insights have evolved from this detailed characterization of the pathophysiology of ARDS. Though overall pulmonary radiographic density is increased in ARDS patients, radiographically spared areas retain normal compliance. This has led to the concept of ARDS-affected lungs as small rather than stiff, characterized by fewer functional alveoli rather than diffusely decreased compliance—the "baby lung" model. Computed tomography scanning during tidal breathing suggests that a 3-compartment model may best depict the lung during early ARDS. In addition to an essentially normal compartment and an irreparably consolidated compartment, there is a compartment that is "recruitable," collapsed at low airway pressures but inflating with sufficient distending pressures. During tidal breathing at low levels of PEEP, this compartment can be observed to collapse and reinflate cyclically. PEEP improves oxygenation to a degree proportional to the amount of this recruitable lung, accounting in part for Ashbaugh's original observation of its benefits. With increased airway pressure, recruitable lung expands, but nondependent, normal alveolar regions are prone to overdistention (Fig. 2). Static compliance increases in the recruited lung regions but decreases in the overdistended lung, leading to a redistribution of ventilation. These basic characteristics of pulmonary physiology in the ARDS patient inform the following discussion of the evolution of appropriate ventilatory strategies.
Fig. 1. Normal alveolus (left) and injured alveolus in the acute phase of the acute respiratory distress syndrome (right). The inciting event is thought to be injury of pulmonary vascular endothelium. Bronchial and alveolar epithelium sloughs and contributes to hyaline membrane formation. Neutrophils marginate through interstitium into air space, where they release oxidants, proteases, and other proinflammatory molecules. Alveolar macrophages secrete cytokines, interleukins, and tumor necrosis factor α, stimulating chemotaxis and activating neutrophils, promoting a cycle of inflammation and injury. Protein-rich edema fluid fills the alveolus, contributing to surfactant dysfunction. IL = interleukin. PAF = platelet-activating factor. MIF = macrophage inhibitory factor. (From Reference 3, with permission.)

Traditional Mechanical Ventilation in Acute Respiratory Distress Syndrome: Strategies and Complications

Although in Ashbaugh’s original series, 4 of 12 ARDS patients were not mechanically ventilated at the time of diagnosis, all required mechanical ventilation during the courses of their diseases. Indeed, while not part of the formal definition, the need for mechanical ventilatory support is virtually a sine qua non for ARDS. Important advances have been made, and continue to be made, in determining the risks and benefits of such support and in improving the safety and efficacy of mechanical ventilation.

“Traditional” ventilator management in ARDS, as in other causes of respiratory failure, emphasized unloading of respiratory musculature and normalization of blood gases. The fraction of inspired oxygen (F_{I0}) was titrated to provide oxygen saturations in the range of 88–95%.
terial partial pressure of oxygen (P_{aO_2}) and P_{aCO_2}, were associated from the start with well-defined hazards. Initial concerns emphasized a range of clinically and radiographically apparent lung injury collectively referred to as "barotrauma." This familiar phenomenon, studied in detail by Macklin and Macklin, is characterized by gas, escaped from ruptured alveoli, tracking through bronchovascular sheaths and adjoining tissue planes to yield pulmonary interstitial emphysema, subcutaneous emphysema, pneumomediastinum, and pneumothorax as its principal macroscopic manifestations. Experimental overinflation of fresh cadaver lungs suggested different profiles of pressure excess in the pathogenesis of different patterns of barotrauma. Intermittent excessive pressures resulted in the rupture of peripheral alveoli and pneumothorax, while less extreme but more sustained pressure elevations led to pneumomediastinum and subcutaneous emphysema. Both pressure profiles could be seen in traditional ventilatory management.

Barotrauma occurred at widely varying rates in different series of mechanically ventilated patients, but patterns of predisposition began to emerge. In a prospective study of 354 patients undergoing assisted ventilation, Zwillich et al reported an overall pneumothorax incidence of 4.2%. There were significant associations with younger age and use of PEEP. Ventilatory pressures were not noted. Barotrauma incidence was similar in a subsequent prospective study of 553 patients receiving ventilator support. Although the overall rate was 4%, patients undergoing volume-cycled ventilation had a barotrauma frequency of 9%, significantly higher than the 1% rate associated with pressure-cycled ventilation. Use of PEEP increased barotrauma to 15%: the explicit indication for PEEP was an F_{1O_2} requirement > 0.5 to maintain F_{aO_2} > 60 mm Hg. Petersen and Baier found an 8% rate of pneumomediastinum, subcutaneous emphysema, or pneumothorax in an exclusively medical intensive care population. Those with barotrauma were younger, had higher peak inspiratory pressure (PIP), and had higher levels of maximum PEEP. Indeed, pulmonary barotrauma incidence was 43% with PIP > 70 cm H_{2}O, 8% with PIP of 50–70 cm H_{2}O, and 0% with PIP < 50 cm H_{2}O. Although the authors did not specifically note the association, half of the patients with barotrauma carried a diagnosis of ARDS. This diagnostic association implicit in the aforementioned studies was made explicit by Gammon et al in a retrospective analysis of 139 intubated patients. Mediastinal emphysema or pneumothorax was seen in 24% of patients overall, but in 66% of ARDS patients. Patients with barotrauma had higher PIP, PEEP, respiratory rate, and minute ventilation than patients without this complication; however, these associations were largely due to their cosegregation with the higher-risk ARDS population.

Conventional Barotrauma

Traditional ventilatory strategies, though frequently capable of achieving their express goals of near normal arterial partial pressure of oxygen (P_{aO_2}) and P_{aCO_2}, were associated from the start with well-defined hazards. Initial concerns emphasized a range of clinically and radiographically apparent lung injury collectively referred to as "barotrauma." This familiar phenomenon, studied in detail by Macklin and Macklin, is characterized by gas, escaped from ruptured alveoli, tracking through bronchovascular sheaths and adjoining tissue planes to yield pulmonary interstitial emphysema, subcutaneous emphysema, pneumomediastinum, and pneumothorax as its principal macroscopic manifestations. Experimental overinflation of fresh cadaver lungs suggested different profiles of pressure excess in the pathogenesis of different patterns of barotrauma. Intermittent excessive pressures resulted in the rupture of peripheral alveoli and pneumothorax, while less extreme but more sustained pressure elevations led to pneumomediastinum and subcutaneous emphysema. Both pressure profiles could be seen in traditional ventilatory management.

Barotrauma occurred at widely varying rates in different series of mechanically ventilated patients, but patterns of predisposition began to emerge. In a prospective study of 354 patients undergoing assisted ventilation, Zwillich et al reported an overall pneumothorax incidence of 4.2%. There were significant associations with younger age and use of PEEP. Ventilatory pressures were not noted. Barotrauma incidence was similar in a subsequent prospective study of 553 patients receiving ventilator support. Although the overall rate was 4%, patients undergoing volume-cycled ventilation had a barotrauma frequency of 9%, significantly higher than the 1% rate associated with pressure-cycled ventilation. Use of PEEP increased barotrauma to 15%: the explicit indication for PEEP was an F_{1O_2} requirement > 0.5 to maintain F_{aO_2} > 60 mm Hg. Petersen and Baier found an 8% rate of pneumomediastinum, subcutaneous emphysema, or pneumothorax in an exclusively medical intensive care population. Those with barotrauma were younger, had higher peak inspiratory pressure (PIP), and had higher levels of maximum PEEP. Indeed, pulmonary barotrauma incidence was 43% with PIP > 70 cm H_{2}O, 8% with PIP of 50–70 cm H_{2}O, and 0% with PIP < 50 cm H_{2}O. Although the authors did not specifically note the association, half of the patients with barotrauma carried a diagnosis of ARDS. This diagnostic association implicit in the aforementioned studies was made explicit by Gammon et al in a retrospective analysis of 139 intubated patients. Mediastinal emphysema or pneumothorax was seen in 24% of patients overall, but in 66% of ARDS patients. Patients with barotrauma had higher PIP, PEEP, respiratory rate, and minute ventilation than patients without this complication; however, these associations were largely due to their cosegregation with the higher-risk ARDS population.
Systemic Gas Embolization

Gas escaping from injured lung need not be contained in extra-alveolar spaces of the thorax. A further complication, described in adults by Marini and Culver,23 is systemic embolization of gas via a bronchovenous connection, leading in severe cases to a syndrome of livido reticularis, cerebral infarction, and myocardial injury. Akin to its occurrence in diving accidents, microembolization of gas impedes blood flow through small vessels mechanically and by induced vasospasm, promoting tissue ischemia. While the small quantities and rapid resorption of embolized gas make definitive diagnosis singularly difficult, Marini and Culver speculated that in certain clinical contexts such unexplained conditions as sudden agitation, delirium, and local pain might be ascribable to this complication of mechanical ventilation.21

Ventilator-Induced Lung Injury

While subcutaneous emphysema, pneumothorax, pneumomediastinum, and perhaps systemic gas embolism are important causes of morbidity and mortality in mechanically ventilated patients, manifest air leaks do not comprehend the spectrum—indeed, are probably not the most important form—of what has come to be known as ventilator-induced lung injury (VILI). A great deal of attention has focused in recent years on data, particularly from animals, showing that mechanical ventilation can cause a pattern of diffuse lung injury indistinguishable from the histopathology characteristic of early ARDS.

The possibility that high-pressure ventilation of lungs with heterogeneous compliance characteristics could itself cause hemorrhage and hyaline membrane formation was suggested by Mead et al.22 Teplitz extended this reasoning to suggest that ARDS might be considered an iatrogenic process due to the aggressive mechanical ventilatory support of patients with noncardiogenic pulmonary edema.23 He observed that pulmonary pathology specimens collected from burn patients prior to 1963 rarely showed hyaline membrane formation, whereas hyaline membranes became more common after 1963. This distinction correlated with the development of routine clinical blood gas monitoring, and hence with the institution of more vigorous interventions in patients with severe gas exchange abnormalities. These speculations were provocative and insightful, and while few would argue that ARDS is fundamentally iatrogenic, there is now widespread agreement that mechanical ventilation can contribute to this subtler but profound form of lung injury.24,25

A plethora of animal studies have amassed demonstrating that lung injury can be exacerbated, or created de novo, under certain patterns of mechanical ventilation. Insights have been gained into the nature of alterations in pulmonary capillary permeability, the relative importance of extremes of pressure and volume, the role of cyclic recruitment and derecruitment, and the respective contributions of PEEP and Vf. Since these issues lie at the very heart of contemporary volume-limited ventilatory strategies, they bear further consideration here. VILI has been comprehensively reviewed in a recent report by Dreyfuss and Saumon.25

Normal Lungs

Greenfield et al were among the first to demonstrate that mechanical ventilation at high airway pressures was associated with lung damage. They exposed healthy dogs to PIP of 26–32 cm H2O over 2 hours. Twenty-four hours later, diffuse bilateral atelectasis developed, in apparent concert with an increase in the minimum surface tension of saline lavage fluid. These changes were attributed to depletion, alteration, or interference with the activity of surfactant because of overinflation.26 Barsch et al ventilated dogs for 1–3 days at PIP of 34 cm H2O, and discovered, in addition to substantial atelectasis, vascular damage, pulmonary edema, hemorrhage, and hyaline membrane formation.27

Webb and Tierney showed that, in some preparations at least, pulmonary edema due to high-pressure mechanical ventilation could develop much more rapidly.28 Normal rats were ventilated with a range of peak airway pressures. No pulmonary edema developed after 60 minutes at pressures of 14 cm H2O, but moderate edema developed with 30 cm H2O peak pressure. At pressures of 45 cm H2O, severe pulmonary edema, hypoxemia, and decreased lung compliance were observed after as little as 13 minutes. Microscopic evaluation of the edema fluid showed an eosinophilic staining pattern consistent with a high protein content and suggestive of increased vascular permeability and exudation.26 Electron microscopic observations in a similar model showed a pattern of diffuse alveolar damage and endothelial disruption.29

Kolobow et al explored the effects of high-pressure ventilation in healthy sheep to determine whether distending pressures similar to those routinely used in the clinical management of acute respiratory failure were injurious to large animal lungs. They were motivated by a compelling disparity in the outcomes of two extracorporeal membrane oxygenation (ECMO) trials. The National Institutes of Health-sponsored ECMO collaborative study had failed to show a mortality benefit when ECMO was used as an adjunct to "state of the art" ventilatory management.31Gattinoni et al showed dramatically better results when similar patients placed on ECMO underwent low-frequency ventilation with PIP < 35 cm H2O, an improvement they attributed to reduced ventilator-associated lung injury.32 Consistent with that hypothesis, Kolobow et al found that
mechanical ventilation of healthy paralyzed sheep at \(\text{PIP} \) of 50 cm H\(_2\)O led, over a matter of hours, to deteriorating pulmonary mechanics, respiratory failure, and severe lung damage at autopsy. By contrast, \(\text{V}_T \) of 10 mL/kg with associated \(\text{PIP} \) of 15–20 cm H\(_2\)O yielded preserved mechanics and largely normal autopsy findings. These investigators subsequently showed similar, though somewhat milder, deleterious effects in sheep ventilated with \(\text{PIP} \) of 30 cm H\(_2\)O.\(^{31}\)

"Barotrauma" versus "Volutrauma"

Building on an experimental approach pioneered 50 years earlier,\(^{84}\) Dreyfuss et al undertook to determine whether the insulting agent in studies of mechanical ventilation was in fact high airway pressure, as usually described, or consequent high volumes. As had been previously described in several studies, healthy rats ventilated with \(\text{PIP} \) of 45 cm H\(_2\)O and resultant \(\text{V}_T \) of 40 mL/kg developed enlarged, congested lungs with increased microvascular permeability as determined by radiolabeled protein leakage. Lung appearance and vascular permeability were preserved in rats ventilated with \(\text{PIP} \) of 7 cm H\(_2\)O and \(\text{V}_T \) of 13 mL/kg. Rat lungs ventilated with \(\text{PIP} \) of 45 cm H\(_2\)O but \(\text{V}_T \) constrained by thoracoabdominal banding to 19 mL/kg appeared normal by both light and electron microscopy, and maintained normal microvascular permeability. Eventually, lungs of rats ventilated to \(\text{V}_T \) of 44 mL/kg with negative inspiratory pressure via an iron lung resembled those of the high-pressure/high-volume group.\(^{35}\) Thus it appeared that "volutrauma" was a more apt description than the traditionally accepted "barotrauma".\(^{36}\) Similar results were reported in other species, including rabbits\(^{17}\) and lambs.\(^{38}\)

Injured Lungs

In the studies reported above, high-pressure/high-volume ventilation was shown to lead to a pattern of diffuse alveolar damage in normal animal lungs. It is reasonable to argue that these results may be pertinent at least to the impact of mechanical ventilation on relatively spared lung regions in human ARDS. Additional studies have found that similar ventilatory strategies exacerbate preexisting injury in chemical models of ARDS. Bowton and Kong found higher lung weights in oleic acid-injured lungs exposed to high \(\text{V}_T \) (18 mL/kg) than in those exposed to low \(\text{V}_T \) (6 mL/kg).\(^{39}\) The lack of uninjured, mechanically ventilated controls rendered their results difficult to interpret. This was rectified by Hernandez et al, who found that oleic acid injury decreased the pressure threshold for ventilator-induced injury relative to healthy lungs (Fig. 3).\(^{40}\) The results of Dreyfuss et al were still more intriguing. Using \(\alpha \)-naphthylthiourea (ANTU) to create moderate permeability edema, they showed that the injurious chemical effects were unaffected by low volume (7 mL/kg) ventilation. ANTU-associated and ventilation-associated injury were additive at intermediate \(\text{V}_T \) (25–33 mL/kg). At 45 mL/kg, however, lung damage was synergistic, exceeding the arith-
metic sum of the expected chemical injury and vol-
utrauma.41

Inflammatory Mediators

In addition to the direct mechanical effects of overin-
flation, VILI may involve a host of inflammatory medi-
tors. Woo and Hedley-Whyte noted an accumulation of
leukocytes and alveolar macrophages in the overinflated
lungs of open-chested dogs.42 Tsumo et al observed in-
lammary cell infiltration in piglet lungs with diffuse alveolar
damage induced by high-pressure mechanical ventilation.43
Kawano et al demonstrated that saline-lavaged lungs of
neutropenic rabbits did not develop increased permeability
or hyaline membranes, unlike those of control rabbits.44
Hyaline membranes were seen to develop in ventilated
isolated rat lungs despite exsanguination,45 but these lungs
had been previously lavaged and may already have re-
crinated neutrophils. More recently, Tremblay et al found
that bronchoalveolar lavage fluid from isolated rat lungs
after high-volume, zero PEEP ventilation had high levels
of tumor necrosis factor α, interleukin 1β, interleukin 6,
and macrophage inflammatory protein.46 Ranieri et al found
a similar profile in bronchoalveolar lavage fluid from ARDS
patients undergoing traditional ventilation. This landmark
study found a significant reduction in these inflammatory
mediators with use of lung-protective ventilation.27 Von
Bethmann et al detected a similar profile in the perfusate
of isolated mouse lungs ventilated at high volumes with
negative pressure ventilation, suggesting that cytokines in
an intact animal might be released into the systemic cir-
culation.48 Like the demonstration by Nahum et al that
high Vτ, low PEEP ventilation in dogs promoted translo-
cation of bacteria from the lung into the general circula-
tion,49 systemic cytokines provide a plausible mechanism
for the multiple organ system failure that is the most feared
and lethal complication of ARDS.50

Low Tidal Volume Injury and Positive End-
Expiratory Pressure

Though a preponderance of evidence suggested that
mechanical ventilation incited lung injury through excessive
pressures or volumes, two observations proved perplexing.
The first was the inconsistent observation that PEEP could
ameliorate the deleterious effects of high-pressure/high-
volume ventilation. Webb and Tierney demonstrated that
the protective effect of PEEP added to a high-pressure/
high-volume ventilation strategy. Rats ventilated with 45
cm H₂O end-inspiratory pressure developed alveolar
edema, hypoxia, and high lung weight, while those with
the same end-inspiratory pressure but 10 cm H₂O PEEP
had no edema and better gas exchange.28 A similar effect
of PEEP was observed by Corbridge et al in mechanically
ventilated dogs after induction of diffuse alveolar damage
with acid aspiration.41 Both groups of investigators rea-
sioned that low end-expiratory pressures and consequent
alveolar hypoinflation led to surfactant inactivation and
possible displacement into airways. Loss of surfactant ac-
tivity would then increase alveolar surface tension and
atelectasis, and perhaps also decrease permissive pressures,
promoting fluid transudation.28,51,52 The possible-
abilities that higher PEEP might increase Zone 1 conditions
in the lung, or promote lymphatic clearance, were also
entertained. Dreyfuss et al found less interstitial and no
alveolar edema in rats ventilated with high-pressure/high-
volume with the addition of 10 cm H₂O PEEP, and made
the important observation that epithelial and endothelial
ultrastructure were preserved, arguing for a true “protec-
tive effect” of PEEP.53 Since PIP was kept the same, Vτ
were smaller in the PEEP group (25 ml/kg) than in the
without PEEP (40 ml/kg). This raised the possi-
ability that it was the size of the ventilatory excursion itself
that was injurious. However, rats undergoing normal Vτ
ventilation from high functional residual capacity during
negative pressure ventilation had gross and ultrastructural
lung damage similar to that of the high-pressure/high-vol-
ume group, suggesting it was total lung distention rather
than large tidal excursions per se that were injurious.53 As
the authors note, whatever its source, “any form of lung
overinflation is noxious.”56

The second perplexing observation was that mechanical
ventilation of injured lungs with low Vτ could also exac-
terbrate lung injury. In normal lungs, small airways and
alveolar units do not collapse at end expiration, and rela-
tively low Vτ are usually not injurious. In lungs with
ARDS-like injury, regional collapse occurs at end expira-
tion. During normal tidal breathing, some areas can be
observed to undergo cyclic opening and collapse.9 Possible
implications of this for surfactant activity are discussed
above. Following upon the work of Mead et al,22 Robert-
son hypothesized that repeated opening and closing might
also generate shear stresses that would exacerbate lung
injury.54 Collapsed airways would have a threshold open-
ing pressure. When that pressure was exceeded during a
tidal breath, the airway would open progressively from
the proximal to the distal portion. The pressure wave moving
along the airway would apply tangential pressure to the
epithelium, creating shear stress. Wall tension at the junc-
tions between open and collapsed alveoli might be sub-
stantially higher than end-inspiratory pressure.22 Low Vτ
in injured lungs could therefore cause progressive injury,
while application of PEEP sufficient to maintain airway
patency at end-expiration should be protective. This was
tested in a rabbit model of ARDS by Sandhar et al, who
found less injury in saline-lavaged lungs with PEEP suf-
ficient to maintain airway patency than with lower levels
of PEEP.55 To circumvent the confounding effects of dif-
There are differing pulmonary blood flows and blood gases with different ventilatory strategies. Mussacce et al performed a similar experiment in lavaged, explanted rat lungs. Lungs ventilated for 2 hours with 5-6 mL/kg Vt and sufficient PEEP to maintain open lung units had injury scores similar to control lungs exposed to a static inflation pressure of 4 cm H2O. Lungs ventilated with similar Vt but lower levels of PEEP had more severe damage. Strikingly, the location of injury varied with the PEEP level, moving more proximally as PEEP was reduced. Thus, two important problems vexing proponents of a high-pressure/high-volume mechanism of VILI appeared to have an important conceptual overlap. Low Vt could be injurious if they involved pressure swings that crossed the opening pressures for recruitable lung units in damaged lungs. PEEP, though potentially increasing the risk of overdistention, could be protective if it maintained end-expiratory pressures above closing pressures for those units.

Concerns over both overdistention and cyclic recruitment and derecruitment of alveolar units have led many experts to suggest the utility of pressure-volume (P-V) curves in individualizing ventilatory parameters. A P-V curve of the respiratory system is generated with use of a large-volume syringe or, more typically, by using the ventilator to evaluate static compliance through a graded series of inflations. In many ARDS patients the P-V curve assumes a sigmoidal shape (Fig. 4). The lower point of maximum curvature is usually referred to as the lower inflection point or Pflex. The upper point of maximum curvature is usually referred to as the upper inflection point (UIP). While there are various interpretations, the lower inflection point is commonly thought to be caused by the inflation of large numbers of recruitable lung units and the decreased compliance above UIP to suggest increased risk of overdistention. On this view, PEEP should be set above the lower inflection point and Vt adjusted to keep plateau pressures below the UIP. The P-V curve is theoretically attractive, and has guided ventilator adjustments in several clinical trials. There remains intense debate, however, over the relative utility of inflation and deflation curves, the significance of the "inflection" points, and the best application of the P-V curve to the adjustment of ventilatory parameters. Its clinical utility remains unproved. A more detailed discussion of the vast literature and myriad subtleties of PEEP, P-V curves, and alveolar recruitment is beyond the scope of this article.

Collectively, there is extensive support for the idea that ventilation at both high and low lung volumes, at either extreme of the compliance curve of the damaged lung, can worsen pulmonary mechanics, gas exchange, and lung injury (Fig. 5). Injured but recruitable lung demands suffi-
cient end-expiratory pressure to open and to remain open. This static pressure may be sufficient to substantially distend a region of uninjured lung, moving it near to a compliance plateau. Even small additional volume increments from tidal breathing may then be enough to cause over-distention injury.

Contemporary Mechanical Ventilation in Acute Respiratory Distress Syndrome: Lung Protection and Permissive Hypercapnia

The practical challenges posed by the potential for mechanical ventilation to exacerbate lung injury, together with the theoretical difficulty of establishing the parameters of a truly benign ventilatory strategy, promoted alternative gas exchange strategies that avoided large volume excursions and “put the lung at rest.” One such approach is the use of high-frequency oscillation, a common ventilatory modality in management of hyaline membrane disease of neonates. Although it has been the subject of close study for decades, the pathophysiologic morbidity, and mortality benefits of high-frequency oscillation have not been conclusively demonstrated. A second approach is the use of intravenous or extracorporeal gas exchange devices to partially or completely assume the roles of oxygen and carbon dioxide (CO₂) transfer. While these approaches are technically feasible and have proponents, they are highly invasive, expensive, available only in major referral centers, and subject to substantial complications, and their benefits remain unproved in adults. An alternative that has emerged as the standard of contemporary ventilator management in ARDS is to strictly limit VT, tolerating marked alveolar hypoventilation and the consequent hypercapnia.

Although the benefits in status asthmaticus had been previously defined, Hickling et al brought the concepts of diligently limited PIP and “permissive hypercapnia” to the clinical forefront of ARDS management. They retrospectively reviewed records of 50 ARDS patients whose ventilatory support was constrained to PIP < 30–40 cm H₂O by reductions in VT and by “disregarding hypercapnia.” Though VT were “sometimes as low as 5 mL/kg,” minimal VT was more typically 8–10 mL/kg. Mean and maximum measured P₅CO₂ were 62 mm Hg and 129 mm Hg, respectively, with concordant pH of 7.23 and 7.02, and substantial base excesses. While there were no controls, mortality was much lower than predicted on the basis of Acute Physiology and Chronic Health Evaluation I scores, lung injury scores, and ventilator scores.

Although Hickling’s report was provocative and compelling, adoption of pressure-limited ventilation and permissive hypercapnia as standards of care depended critically on the answers to two questions. The first was whether hypercapnia could indeed be merely “disregarded” in the management of critically ill patients. The second was whether the benefit of such a lung-protective strategy would prove robust in prospective, controlled clinical trials.

Physiologic Consequences of Permissive Hypercapnia

Since the theoretical and apparent clinical benefits of a lung-protective strategy incorporating permissive hypercapnia were first put forward for ARDS, considerable attention has focused on the effects of hypercapnia and respiratory acidosis at the cellular and systemic levels, in animals, anesthetized humans, and patients with respiratory failure. Though much remains to be learned, the broad outlines seem clear: the effects of hypercapnia are myriad, complex, subtly interwoven, and in general remarkably well tolerated by even the critically ill.

Healthy humans and most other terrestrial mammals assiduously defend a P₅CO₂ near 40 mm Hg, inviting teleological arguments that to disturb that value is to place the organism at peril. Though at 37°C a blood pH of 7.40 may promote an intracellular pH ideal for protein ionization, this blood pH could be maintained over a wide range of P₅CO₂. It has been elegantly proposed that a P₅CO₂ of 40 mm Hg strikes an optimum balance between respiratory work and arterial oxygenation. If P₅CO₂ rises, P₅O₂ falls, by the alveolar gas equation; at a P₅CO₂ near 100 mm Hg, hypoxemia may be life-threatening. Decreases in P₅CO₂ below 40 mm Hg do little to augment P₅O₂, at substantial metabolic cost for increased ventilation. The optimization argument assumes, however, that F₂O₂ is constrained to 0.21. With supplemental oxygenation, a much higher P₅CO₂ can be tolerated without threatening hypoxemia.

A natural extension of the above argument is that circumstances may prevail in which the optimum “set point” for P₅CO₂ is considerably higher (Fig. 6). When impaired respiratory mechanics make the metabolic cost of maintaining sufficient alveolar ventilation to defend a P₅CO₂ of 40 mm Hg prohibitively high, there may be a useful economy in allowing CO₂ to accumulate to a new steady state. This is the presumed adaptation behind the chronic hypercapnia of many patients with severe obstructive lung disease and the argument against ventilating such patients to eucapnia during exacerbations requiring mechanical support. Similar advantages accrue to the strategy in ARDS, wherein a large dead space-to-ventilation ratio impairs the efficiency of ventilation and hypermetabolism can lead to important increases in CO₂ production. Furthermore, the concomitant rightward shift of the oxyhemoglobin dissociation curve in the setting of respiratory acidosis (the Bohr effect) favors oxygen unloading in the periphery, which may be an optimal approach toward the different goal of oxygen delivery to a tissue in crisis.

The broader functional and physiologic consequences of permissive hypercapnia have been well reviewed.

Ventilator-Induced Lung Injury and Lung-Protective Strategies in ARDS

Respiratory Care • February 2001 Vol 46 No 2
Fig. 6. Permissive hypercapnia decreases ventilatory demand. Estimated minute ventilation (V̇e) requirement as a function of CO2 production (VCO2) for 3 arterial partial pressure of carbon dioxide (Paco2) levels, assuming dead space fraction (ratio of dead space volume to tidal volume, VD/Vt) of 0.7. Compared with Paco2 of 40 mm Hg, minute ventilation is 34% lower at 60 mm Hg and 50% lower at 80 mm Hg. Vertical line indicates normal CO2 production. (From Reference 69, with permission.)

accumulating in blood diffuses freely across erythrocyte and other cellular membranes, and is converted by cytosolic carbonic anhydrase to carbonic acid, which rapidly ionizes. The consequent intracellular acidosis is checked by immediate, partial physicochemical buffering; intracellular pH is typically restored to normal over 1–3 hours by additional mechanisms, including transmembrane H+ and HCO3− flux.69 These potent regulatory mechanisms essentially preclude hypercapnia from generating severe intracellular acidosis. The transient acidosis that develops, however, can cause many disturbances.72 Glycolysis is decreased, albeit with a well-preserved cellular energy state. Abnormal excitation-contraction coupling and actin-myosin binding lead to malfunction of contractile elements. Cell membrane ion conductances and electrolyte transport are modulated, altering the properties of excitable cells. These changes are thought to be reversible with correction of intracellular acidosis.

Though the intracellular effects of a discrete CO2 challenge are rapidly neutralized, full metabolic compensation for a systemic respiratory acidosis via renal acidification requires 1–5 days.73,74 Despite the potentially ubiquitous effects of this sustained acidosis, however, substantive effects appear to be limited to the cardiovascular and central nervous systems (CNS). In general, these systemic consequences comprise a synthesis of local tissue effects and global sympathoexcitatory activation.75

Hypercapnia has been known for almost a century to depress myocardial contractility in isolated hearts.76 This effect is completely reversible.77 In intact animals, however, the reduction in myocardial contractility is more than offset by the stimulatory effects of hypercapnia on the sympathetic nervous system (Fig. 7).82,83 Catecholamine release increases heart rate and may increase stroke volume, leading to a net increase in cardiac output.79,80 (Fig. 8). This is probably adaptive in many circumstances, but may place unacceptable demand on a failing or ischemic heart.81 Furthermore, though CO2 is a coronary vasodilator, its net effect on perfusion of ischemic myocardium is unclear.71

CO2 causes peripheral vascular smooth muscle relaxation,82,84 an effect again opposed by sympathetic vasoconstriction. The consequence is usually a mild net decrease in systemic vascular resistance (SVR).71,79 Venous capacitance is also reduced.81 Since preload is augmented and afterload reduced, cardiac output tends to be further enhanced. The slight drop in SVR is well compensated by the increase in cardiac output, leading to maintenance or, more often, increase of mean arterial blood pressure. This can be compromised by pharmacologic β blockade.80,84

Though systemic vascular resistance decreases with respiratory acidosis, pulmonary vascular resistance is maintained or increased because of vasoconstrictive effects and possible potentiation of hypoxic vasoconstriction. In the face of increased cardiac output, pulmonary arterial pressure rises and substantial pulmonary hypertension can develop.

Given the manifest vasoactivity of acute hypercapnia, its effects on local and regional blood flow are of great importance to its application in critically ill patients. Unfortunately, results differ between animals, preparations, and organs, and in particular are mixed for both splanchic and renal perfusion.71,72,85 Regional blood flow in a particular case cannot be predicted with confidence.

Moderate respiratory acidosis can lead to depressed consciousness, increased respiratory drive, and a lowered seizure threshold.72 at high levels, CO2 is anesthetic.74 Importantly to patient care, pharmacological modulation of the increased respiratory drive usually requires high levels of sedation, and often neuromuscular blockade,57,71,72,86 with the attendant possibilities of important neuromuscular sequelae.87,88 The respiratory drive at any Paco2 can be suppressed by correction of the attendant acidosis.91 Among the many CNS alterations due to permissive hypercapnia, however, cerebral blood flow and intracranial pressure (ICP) effects are the most profound. Because of both cerebral vasodilation and increased systemic blood pressure,71 cerebral blood flow rises dramatically with Paco2, plateauing at levels of Paco2, in excess of 100 mm Hg.72 While there is some debate over the direct role of molecular CO2,72 it is generally thought that extracellular pH is the critical variable.71,92 ICPs rise monotonically with flow, and can be several times normal. This degree of intracranial hypertension is generally associated with only modest neurological sequela. In pathologic settings in which ICP
or soft tissue volume are already increased, such as with cerebral edema, mass lesions, or head trauma. Substantial respiratory acidosis can lead to mass effect, compromised perfusion, and even herniation, and should usually be avoided. It is notable, however, that while prophylactic hyperventilation has been recommended in acute head injury, its prolonged use has been associated with a worsened neurological outcome in subsets of patients with traumatic brain injury.53

It is widely held that it is the associated respiratory acidosis, rather than hypercapnia per se, that engenders the described profile of hemodynamic and vascular alterations. Consistent with this, hemodynamic and CNS effects can be markedly attenuated if \(P_{\text{aco}_2} \) elevation is separated from the accompanying acidosis by the administration of base.79,85 In sheep made acutely hypercapnic to a \(P_{\text{aco}_2} \) of 80 mm Hg and pH of 7.14, cardiac output and carotid arterial blood flow increased markedly from baseline, and ICP rose 300%. When arterial pH was maintained in normal range by concomitant bicarbonate administration, cardiac output and carotid blood flow were significantly elevated only at the 1-hour time point, and ICP remained at baseline.85 In swine, catecholamine secretion, decreases in SVR, and increases in cardiac output and heart rate were also attenuated, though not eliminated, by extracellular pH buffering with bicarbonate (see Fig. 7).79 While the ability to blunt the systemic effects of hypercapnia is important, the delayed and incomplete nature of the attenuation is also of interest. Though blood pH was closely regulated, extracellular pH monitoring may not reflect intracellular conditions. Since biological membranes are much more permeable to \(\text{CO}_2 \) than to bicarbonate, it is unlikely that even bolus administration of bicarbonate prevents at least transient intracellular acidification. The prevention of intracranial hypertension, at least by the first measurement at 1 hour, supports the notion that cerebral blood volume is particularly sensitive to extracellular pH.

The depths of human tolerance to respiratory acidosis have been sounded on occasion, usually by iatrogenesis. A patient accidentally administered \(\text{CO}_2 \) during general anesthesia attained a \(P_{\text{aco}_2} \) of 248 mm Hg and a pH of 6.86, but recovered without complication.23 A patient undergoing cosmetic surgery, with adequate oxygenation but inadequate ventilation for over 4 hours, reached a \(P_{\text{aco}_2} \) of 375 mm Hg and a pH of 6.6; despite postanesthetic coma there was an uneventful recovery.95 Similarly severe respiratory acidosis has been tolerated by children for up to 2 days.96

Although the respiratory acidosis consequent to permissive hypercapnia is usually discussed in terms of its potentially deleterious effects, the argument has been advanced that acidosis may instead be adaptive and protective.97 Augmentation of cardiac output and mean arterial pressure, together with a rightward shift in the oxyhemoglobin dissociation curve, can in theory promote oxygen delivery and unloading in tissues, though the uncertainty surrounding individual organ perfusion is described above. Decreased cellular respiration97 may in turn decrease oxygen consumption. There are animal data suggesting that hypercapnic acidosis (specifically) may di-
minish ischemic reperfusion injury in heart, brain, and lung. Acidosis also downregulates a host of inflammatory processes associated with tissue injury, decreases oxygen free-radical production in brain homogenates, and increases nitric oxide production in the lung. Though the concept that respiratory acidosis is protective has expanding scientific grounding and has gained some theoretical credence among intensivists, much needs to be learned before the therapeutic possibilities for patient care can be seriously considered.

Taken together, these data suggest that acute respiratory acidosis is likely to be tolerated in most clinical settings, even by critically ill patients. Neither certainly safe nor certainly hazardous levels have been clearly defined, and commonly cited lower levels of clinician comfort in the pH range of 7.15 to 7.25 appear largely arbitrary. Known cardiovascular and CNS effects may be less well tolerated by certain patient subsets, and these subsets are in general the least well studied. Permissive hypercapnia is thus probably still best used circumspectly in patients with cardiac ischemia and left ventricular compromise, and with particular caution in patients with pulmonary arterial hypertension and right heart failure. Because of the potent effects of respiratory acidosis on cerebral perfusion and the potentially catastrophic consequences of increased ICP in susceptible patients, permissive hypercapnia is contraindicated in patients with serious head trauma or certain CNS pathologies. If clinical circumstances mandate its use, ICP monitoring is indicated. Concerns regarding respiratory acidosis are amplified in the setting of concurrent metabolic acidosis. As further data accrue from clinical applications of permissive hypercapnia (see below), these guidelines may be refined.

Clinical Consequences of Permissive Hypercapnia

As permissive hypercapnia in lung-protective mechanical ventilatory strategies has become more widespread, especially for the management of ARDS, a substantial amount has been learned about its implications for clinical practice. In general, these results accord well with those from the studies of animals and anesthetized humans described above.

Intracranial pathology is generally considered an absolute contraindication to permissive hypercapnia, limiting clinical data on its consequences in that setting largely to
case reports. Tasker and Peters described a young patient with meningococcal meningitis, cerebral edema, and ARDS, and in whom electroencephalography and jugular oxygen saturation monitoring were used as an indirect gauge of cerebral oxygenation and hyperemia.99 By those measures, clinically important elevations in ICP occurred below a pH of 7.32. With a slow, controlled increase in hypercapnia and progressive renal compensation, the authors were able to reduce PIP from 42 cm H2O to 32 cm H2O and Vt from 12 mL/kg to 6–8 mL/kg over 24 hours.

The hemodynamic effects of permissive hypercapnia in ARDS patients without CNS pathology or severe metabolic acidosis have been studied in several series. Thorens et al induced hypercapnia by decreasing VT over 30–60 minutes in 11 ARDS patients and studied its effects over 2 hours.86 Mean PaCO2 of 59 mm Hg and pH of 7.26 were attained, with a 40% reduction in minute ventilation and a small but significant decrease in mean PIP, from 32.5 cm H2O to 30.6 cm H2O. Surprisingly, heart rate remained unchanged; cardiac index increased by 18% and SVR decreased by 25%, with a net small decrease in mean arterial pressure that approached significance. PVR did not change, but mean pulmonary artery pressure increased significantly, from 29 mm Hg to 32 mm Hg. Notably, while left ventricular stroke work was unchanged, right ventricular stroke work increased by 25%. Venous admixture was increased; increased FIO2 was required to compensate PaO2 reductions in a subset of patients. Oxygen delivery increased, but consumption was unaltered. Carvalho et al compared hemodynamics over time between 23 traditionally managed ARDS patients and 25 ARDS patients managed with a lung-protective strategy characterized by VT < 6 mL/kg and PEEP set above the lower inflection of the static pressure-volume curve.55 In the lung-protective group, average and absolute maximum PaCO2 were 70 mm Hg and 114 mm Hg, respectively; average and absolute minimum pH were 7.13 and 6.88. Slow bicarbonate infusions were administered for pH < 7.2. In patients undergoing permissive hypercapnia, there were highly significant immediate increases in heart rate, cardiac output, and oxygen delivery, with a decrease in SVR and no change in oxygen consumption (see Fig. 8). Consonant with Thorens's results, PVR was unchanged but mean pulmonary artery pressure increased. Statistical analyses suggested that all alterations were attributable to respiratory acidosis rather than to elevated PEEP. Notably, all acute hemodynamic effects were progressively attenuated over 36 hours despite maintained hypercapnia, in concert with renal compensation of the acidosis. In both of the above series, acute hypercapnia was generally well tolerated, without important adverse effects that could be attributed to its hemodynamic or other consequences. Both sets of authors noted, however, that their results reinforce caution in its use in patients with overt heart failure, severe pulmonary hypertension and/or right ventricular dysfunction, and severe hypoxemia.57,100 Although not specifically designed to evaluate the hemodynamic or other systemic consequences of respiratory acidosis, numerous other studies have failed to show obvious adverse effects from permissive hypercapnia in ARDS patients.58,100,101 Its safety, however, remains at issue, as described below.

Mortality Benefits of Low Tidal Volume Ventilation and Permissive Hypercapnia in Acute Respiratory Distress Syndrome

The strong theoretical and experimental bases for lung-protective ventilatory strategies, coupled with encouraging preliminary clinical results, inspired a number of efforts to prove their merit in controlled clinical trials. Initial Canadian102 and European102 multicenter trials did not demonstrate a mortality benefit from limitations on alveolar pressure and VT; the former suggested possibly increased morbidity. Several features of study design and implementation may have contributed to these outcomes. First, with 120 and 116 patients, respectively, neither was powered to detect small differences in outcome. Second, differences in VT between intervention and control groups, though significant, were not large, being 7.2 mL/kg versus 10.8 mL/kg ideal body weight in the Canadian study, and 7.1 mL/kg versus 10.3 mL/kg dry body weight in the European study.102 Though both groups of authors suggested that a mortality difference did not emerge because the control ventilatory strategy was itself protective,100,102 it is at least as likely that limits in the intervention group were insufficiently rigorous.101 Indeed, investigators in the European study had previously reported on the extent of VT and ventilatory pressure limitations necessary to keep plateau pressures under the measured UIP of the pressure-volume curve in 25 ARDS patients (Fig. 9). Even at VT of 7.1 mL/kg (the lower range attained in the randomized trial), approximately 20% of patients would have had plateau pressures above UIP.56 Supporting the possibility of sufficiently common overdistention injury to dampen any signal of the benefit of low VT. Even when VT kept plateau pressures below UIP, overdistention may have occurred; the authors reported a 12.7% rate of pneumothorax.56 This effect might have been amplified by important differences in the way PEEP was set between the preliminary and randomized trials. Finally, and of particular interest in the present context, both sets of investigators, and others, have raised the possibility that mortality benefits due to reduced VT were negated by deleterious effects of controlled hypoventilation, including inadequate alveolar recruitment102 and particularly respiratory acidosis.103 In the European study, mean PaCO2 at day 1 of intervention was 59.5 mm Hg in the treatment group and 41.3 mm Hg in the control group. Corresponding values of pH are not
reported, but no correction of acidosis was employed unless pH fell below 7.05. Smaller mean differences were observed in the Canadian study, but no attempts were made to correct respiratory acidosis unless pH fell below 7.0. It is notable that neuromuscular blocking agents were required significantly more frequently in cases than in controls in the Canadian study; a similar trend in the European Study did not attain significance.

Amato et al found a significant reduction in 28-day mortality in ARDS patients mechanically ventilated with a lung-protective strategy, compared with traditionally managed controls. PEEP levels, ventilatory modes, and V_T all differed between the groups, preventing assessment of the relative importance of any single intervention. Survival to hospital discharge was not different between the groups. Mean P_{aCO_2} and pH were significantly different over the first 36 hours, being 55.58 mm Hg and 7.19-7.25 for the intervention group and 33.35 mm Hg and 7.37-7.40 for the control group, respectively. The difference in P_{aCO_2} was sustained, but the difference in pH disappeared at later time points. Slow bicarbonate infusions were begun for pH < 7.2. Significantly more sedative and paralytic agents were required for the intervention group. The study has been criticized, particularly for the unusually high 71% mortality of the control group.

Doubts over the ability of protective ventilatory strategies to reduce ARDS mortality were laid to rest with the recent publication of the ARDS Network trial. Lower mortality (39.8% vs 31%) was seen in patients supported with mean V_T of 6.2 mL/kg than in those supported with mean V_T of 11.8 mL/kg ideal body weight. It is notable that mean plateau pressures, thought to best reflect alveolar distending pressures, were 25 cm H$_2$O and 33 cm H$_2$O in the intervention and control groups, respectively, remarkably similar to those of 25.7 cm H$_2$O and 31.7 cm H$_2$O in the European trial and to mean PIPs of 23.6 cm H$_2$O and 34 cm H$_2$O in the Canadian trial. The ARDS Network protocol specified a pH goal of 7.3 to 7.45 for both traditional and low V_T groups. This was achieved in the latter by significantly higher respiratory rates, supplemented by bicarbonate infusions as required. There was no significant difference between groups in the amount of neuromuscular blocking agent required.

Though proof of a mortality benefit to a low V_T ventilatory strategy in ARDS represents a major advance, the critical variable in that benefit remains the subject of some debate. It is quite plausible that it is the intended intervention, low V_T, itself. Given the high respiratory rates of patients in the intervention group and the possibility of intrinsic PEEP, it is possible that the benefit was at least partly a derivative PEEP effect. The importance of PEEP in ARDS management is the focus of a new National Institutes of Health ARDS Network trial.

Respiratory Management in Acute Respiratory Distress Syndrome: A Role for Tracheal Gas Insufflation?

The extraordinary research efforts into the nature and mechanisms of VILI, the pathophysiology of ARDS, and
the physiology of hypercapnic acidosis have led to more sophisticated, and now more effective, patient management. Abundant room for improvement remains. A brief synopsis of the foregoing review highlights a subset of the important open questions:

1. It has been shown beyond reasonable doubt that overdistention and cyclic inflation and deflation of injured lung can cause further lung injury. Although this appears to take longer in larger animals than in smaller animals, there are no compelling data to suggest a safe interval for a nonprotective ventilatory strategy in humans. Increasing data suggest that VILI-associated generation of inflammatory mediators may contribute to a systemic inflammatory response syndrome and multiple organ system failure, the leading cause of death in ARDS.

2. Low V\textsubscript{T} ventilatory strategies confer a proven mortality benefit in ARDS, probably by reducing VILI. The precise mechanism conferring that benefit remains somewhat uncertain.

3. Consequences of permissive hypercapnia have been studied from the cellular level to the systemic physiology of ARDS patients. Effects of the attendant respiratory acidosis are very widespread and certainly not fully delineated. The intriguing and important possibility that this acidosis may be adaptive or protective in some settings is gathering support but remains largely conjectural. The gross systemic effects of hypercapnic acidosis, vasodilation, and isolated myocardial depression compensated by catecholamine-induced partial vasoconstriction and a hyperdynamic state appear to be generally well tolerated by animals, anesthetized humans, and critically ill patients. However, certain patient subsets, particularly those with ischemic heart disease, left ventricular compromise, pulmonary hypertension, right heart failure, head trauma, intracranial disease, or coexistent metabolic acidosis, may be at higher risk. Furthermore, controlled trials in which a mortality benefit of lung-protective ventilation was apparent used an increased respiratory rate101 and/or bicarbonate infusion58,101 to control acidosis. Finally, acidosis is associated with dyspnea and increased respiratory drive and is the likely culprit in the increased use of sedatives and paralytics reported in many clinical trials of permissive hypercapnia. Limiting acidosis may enhance patient comfort and reduce the manifold important complications associated with administration of those pharmacologic agents.

The first and second elements of this synopsis suggest that a lung-protective strategy must always be considered a priority (though not necessarily the defining priority) in the management of the ARDS patient. They support the position of Carvalho et al that “except for situations of previous heart and/or neurological disease... the installation of [permissive hypercapnia] in a progressive and gradual manner is not justifiable and may consist in a risky waste of time”.57 The third element, however, supports the position of most experts that permissive hypercapnia is important but should be introduced gradually, and may need to be avoided altogether in susceptible populations.71,72,104,107 How can these well-reasoned but disparate conclusions be reconciled?

An obvious approach is the immediate implementation of a lung-protective, low V\textsubscript{T} ventilatory strategy in a patient with ARDS, but with close control of acidosis pending renal compensation. This can be accomplished, broadly, in two ways, not mutually exclusive: by allowing P\textsubscript{aCO\textsubscript{2}} to rise rapidly, but neutralizing the acidosis, or by controlling the rise of CO\textsubscript{2}. The first of these can be achieved with supplemental buffering. Bicarbonate is inexpensive and widely available, and has been shown to attain the desired effect in some animal models.79,85 In addition to improved clinical benefits, however, concerns over bicarbonate abound: because of urinary excretion it is inefficient;71 it may be ineffective;108 it represents a substantial sodium load; it generates CO\textsubscript{2} that will need to be cleared precisely in a setting in which ventilation is at issue;106,109 and if rapidly administered it has been found, at least in the setting of metabolic acidosis, to cause “paradoxical” intracellular acidosis.110 Carbicarb is an effective alternative that does not generate CO\textsubscript{2} and avoids the transient intracellular acidosis of rapidly administered bicarbonate,111 but is relatively unproved clinically. Tris-hydroxymethyl aminomethane has a greater buffering capacity than bicarbonate, does not elevate109 and may reduce108 CO\textsubscript{2}, and generates bicarbonate. It has recently been recommended for use in acute lung injury.108 though there have been longstanding concerns about possibly deleterious arterial vasodilatory effects,112 and its renal excretion limits its usefulness in patients with renal insufficiency.

Setting aside invasive and technically intensive interventions such as extracorporeal CO\textsubscript{2} removal, control of the rate of CO\textsubscript{2} rise can be achieved by decreasing its production or increasing the efficiency of its elimination. There are close boundaries to what can be done to limit production: control of fever, avoidance of overfeeding, and neuromuscular paralysis are among the approaches commonly employed. A very promising means of improving ventilatory efficiency involves flushing the anatomic dead space through the technique of TGI113-115 Control of acidosis by augmentation of CO\textsubscript{2} clearance affords numerous potential advantages over other approaches. It can be initiated contemporaneously with adoption of a lung-protective ventilatory strategy, and its effects should be "instantaneous." Because it checks hypercapnia itself, it should preclude even transient intracellular acidosis, unlike the currently favored approach of bicarbonate administration, it may improve alveolar oxygenation. It does not represent an intravascular volume load. It is arguable that TGI should not be used to eliminate CO\textsubscript{2} accumulation but to control its rate to allow for renal compensation: maintenance of
steady state at a higher P_{a,cO_2} will always require less alveolar ventilation. It is important to remember in this connection that TGI affords not only a reduction in P_{a,cO_2} for a given level of ventilation, but also a reduction in ventilation for any level of P_{a,cO_2}. The very low V_T required to keep some patients on the linear portion of the pressure-volume curve and the fact that even such rigorous parameters may not eliminate overdistention injury in some patient(s) highlight this potential utility of TGI. Though there are a great many subtleties to its administration and effect, and valid concerns over potential complications, TGI appears in general to be well tolerated.\(^{115}\)\(^{118}\)

Beyond Acute Respiratory Distress Syndrome

The preceding discussion has emphasized the hazards of VILI, the importance and demonstrated efficacy of lung-protective ventilatory strategies, and the issues surrounding attendant respiratory acidosis, with particular reference to ARDS. While there are special practical, scientific, and historical relationships between ARDS and these management concerns, the evolving lessons, including the potential benefits of TGI, are certain to have broader applicability, and to obtain to a variety of disease states. Status asthmaticus is an obvious example, and indeed represented one of the first effective applications of volume-limited ventilation and permissive hypercapnia.\(^6\) The approach seems naturally extensible to other causes of respiratory failure, particularly those characterized by inhomogeneity and increased susceptibility to VILI. As the essential components, benefits, and risks of protective strategies become better delineated, they may inform management in chronic obstructive pulmonary disease, necrotizing pneumonia, and lung transplantation.

Tracheal gas insufflation has been suggested for entirely different clinical applications. Its potential to facilitate ventilator liberation by increasing the efficiency of CO\(_2\) clearance and decreasing work of breathing has been frequently mentioned. Though there may be merit to such an approach in specific cases, its routine use should be viewed circumspectly. Though TGI might, for instance, accelerate extubation or decannulation of a chronic obstructive pulmonary disease patient recovering from hypercapnic respiratory failure, its augmentation of efficiency ends at that moment. Such an approach seems akin to the mistake of ventilating the chronic CO\(_2\) retainer to eucapnia. Unless there is a transition to another TGI technique, such as gas administration through a SCOOP catheter (Transracheal Systems, Englewood, Colorado), independent ventilation might be expected to be short-lived. The valid enthusiasm over the use of TGI in some clinical settings should not degenerate into a case of a technology in search of an application.

Summary

VILI has become recognized as an important factor exacerbating primary lung injury in acute respiratory failure. Lung-protective ventilatory strategies are of proven moral benefit in ARDS, presumably through reduction of VILI. The attendant hypercapnia and respiratory acidosis are thought to be generally well tolerated, but are contraindicated in certain patient populations; the more sobering possibility that they are in fact harmful in as yet indeterminate ways has recently regained attention. TGI may provide a means by which to deploy protective ventilatory strategies while limiting hypercapnia and acidosis, with numerous advantages over bicarbonate and other therapies.

REFERENCES

15. MacKinn M, MacKinn CC. Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many...

55. Sandhar BK, Niblett DJ, Argirias EP, Dunnill MS, Sykes M. Effects of positive end-expiratory pressure on hyaline membrane formation.

Animal and Lung Model Studies of Tracheal Gas Insufflation

Avi Nahum MD PhD

Introduction
Mechanisms of Action
Operational Characteristics
 Modes of Operation
 Catheter Location
 Effect of Tracheal Gas Insufflation on Lung Volume
 Catheter Design
Monitoring during Tracheal Gas Insufflation
 Airway Opening Pressure and Lung Mechanics
 Tidal Volume
 Flow-Controlled Volume-Cycled Ventilation
 Pressure-Controlled Ventilation
 Monitoring Carbon Dioxide Elimination Efficacy of Tracheal Gas
 Insufflation
 Tracheal Gas Insufflation and Ventilator Interactions
Clinical Implications
 Carbon Dioxide Elimination
 Oxygenation
 Work of Breathing
Potential Complications
Summary and Future Directions

Tracheal gas insufflation (TGI) is the continuous or phasic insufflation of fresh gas into the central airways for the purpose of improving the efficiency of alveolar ventilation and/or minimizing the ventilatory pressure requirements. Fresh gas is insufflated near the main carina, usually at flow rates of 2–15 L/min. During expiration, TGI clears the anatomic and apparatus dead space proximal to the catheter tip, thus improving carbon dioxide (CO₂) clearance. Moreover, at high catheter flow rates turbulence generated at the tip of the catheter may enhance distal gas mixing. CO₂ elimination during TGI depends on catheter flow rate, as at higher flow rates a greater portion of the proximal dead space is flushed clear of CO₂. Consequently, as TGI flow is increased, arterial carbon dioxide tension (PₐCO₂) decreases. Eventually, with increasing catheter flow rate, fresh gas completely flushes the available dead space during expiration and the PₐCO₂ reaches a plateau. At that point, increasing catheter flow rate decreases PₐCO₂ much less, probably because of turbulent mixing in the airways distal to the catheter tip. In clinical practice, TGI can be applied either to decrease PₐCO₂ while maintaining tidal volume constant or to decrease tidal volume while keeping PₐCO₂ constant. In the former strategy, TGI is used to protect pH, whereas in the latter it is used to minimize the stretch forces acting on the lung parenchyma, to minimize ventilator-associated lung injury.

Key words: tracheal gas insufflation, animal model, lung model, lung mechanics, mechanical ventilation, airway pressures. [Respir Care 2001;46(2):149–157]
Introduction

Tracheal gas insufflation (TGI) is the continuous or phasic insufflation of fresh gas into the central airways for the purpose of improving the efficiency of alveolar ventilation and/or minimizing the ventilatory pressure requirements. Recently, TGI has received increasing attention as an adjunctive tool to mechanical ventilation. Experimental studies both in lung models and animal models have been essential in understanding TGI's mechanisms of action and operational characteristics. Moreover, experimental studies, especially in animal models of lung injury, have substantiated the potential role of TGI in clinical practice.

Mechanisms of Action

The efficacy of conventional tidal breaths during TGI is improved primarily by two mechanisms. First, fresh gas introduced by the catheter during expiration can dilute the carbon dioxide (CO₂) stored in the series (anatomic) dead space compartment proximal to the catheter tip (Fig. 1). Second, at high catheter flow rates, turbulence generated at the tip of the catheter can enhance gas mixing in regions distant to the catheter tip, thereby contributing to CO₂ removal. TGI is unlikely to be very effective when the alveolar (as opposed to the series compartment) dominates the total physiologic dead space (the ratio of the dead space to the tidal volume, Vₚ/Vₜ) because at small Vₚ (when ever series dead space contributes substantially to Vₚ/Vₜ) or when alveolar ventilation is very low, TGI should be helpful. Many investigators have found that combining TGI with conventional mechanical ventilation (CMV) techniques and high-frequency jet ventilation augments CO₂ elimination. This approach takes advantage of improved ventilatory efficiency due to anatomic dead space washout as well as enhanced mixing due to catheter turbulence generated to permit reduced Vₚ. Another promising modality is combining TGI with external chest vibrations. This novel ventilation technique enhances intra-airway mixing (peak CO₂ transport resistance was displaced from second-generation to fourth-generation airways), thus improving CO₂ elimination.

In normal dogs, TGI decreased arterial carbon dioxide tension (PₐCO₂) from a baseline value of 48 ± 2 mm Hg to 41 ± 2 mm Hg, and addition of high-frequency (29 Hz) chest vibrations further decreased PₐCO₂ to 33 ± 1 mm Hg.

Operational Characteristics

Modes of Operation

During TGI, delivery of fresh gas occurs either throughout the respiratory cycle (continuous flow) or only during a specific segment of it (phasic flow). Continuous catheter flow has also been used in combination with a shutter or a mechanical ventilator, in which closure of an expiratory valve forces catheter flow to deliver all or part of the inspired Vₚ. Phasic TGI is delivered selectively during inspiration or expiration. Inspiratory TGI can be used as the only source of fresh gas, thereby bypassing the portion of the anatomic dead space proximal to the catheter tip, or it can be used in combination with a conventional ventilator to augment alveolar ventilation. During expiratory TGI, catheter flow is timed to occur during all or part of expiration, augmenting alveolar ventilation by flushing CO₂ from the central airways and apparatus dead space.

Carbon dioxide elimination during TGI depends on catheter flow because fresh gas flushes a greater portion of the proximal dead space at higher flow rates (Fig. 2). The volume of fresh gas introduced into the trachea during TGI depends on expiratory time (Tₑ) and catheter flow (Vₑ). At a certain Tₑ × Vₑ, fresh gas completely sweeps the proximal anatomic dead space during expiration. At that point, increasing Vₑ further probably does not further dilute the CO₂ residing in the series dead space. This operational characteristic of TGI, and the fact that the PₐCO₂ decrease caused by reduction in Vₑ/Vₜ is much less at lower Vₑ/Vₜ, limits the decrement in PₐCO₂ afforded by TGI at high Vₑ. Nevertheless, at high Vₑ, PₐCO₂ continues to decrease with increasing Vₑ, but at a slower rate (see Fig. 2). Once the series dead space is flushed completely by the fresh gas during expiration, the flow-dependence of PₐCO₂ is thought to be secondary to enhanced turbulent mixing in the airways distal to the catheter tip.
Because the major mechanism of TGI is flushing the proximal anatomic dead space free of CO₂, if lung deflation takes place throughout expiration secondary to dynamic hyperinflation, the CO₂ that is constantly exhaled by the lung can decrease the efficacy of TGI. This possibility was tested in normal dogs, and the data suggest that the volume of fresh gas insufflated by the catheter, rather than the flow, determines the efficacy of TGI. Consequently, to maintain CO₂ elimination efficacy during inverse ratio ventilation, progressively higher flow rates may need to be applied as T₁ is shortened.

Catheter Location

A greater portion of the anatomic dead space proximal to the catheter tip during exhalation can be flushed by the fresh gas with more distal catheter placement. Moving the catheter toward the carina also advances the turbulence zone generated by the catheter closer to the periphery during both phases of the respiratory cycle, thereby improving the efficacy of TGI. In normal dogs the exact location of the catheter tip (within a few centimeters of the carina) did not prove to be crucial to the efficacy of the TGI in augmenting alveolar ventilation. This observation may simplify the clinical application of TGI, because bronchoscopically or radiographically guided catheter positioning in critically ill patients may not be necessary.

Effect of Tracheal Gas Insufflation on Lung Volume

End-expiratory lung volume (functional residual capacity or FRC) is increased during TGI because of three factors. First, part of the momentum of the discharging jet stream is transferred to the alveoli. Second, placement of the catheter within the trachea decreases its cross-sectional area, increases expiratory resistance, and delays emptying. Third, catheter flow through the endotracheal tube, expiratory circuit, and expiratory valve during expiration can build a back pressure that impedes expiratory flow from the lung. The first and third mechanisms are very similar to what happens during constant flow ventilation. Brampton and Young showed that most of the alveolar pressure generated during constant flow ventilation in dogs was due to the latter mechanism. At flow rates of 8–60 L/min they estimated that only 1.3 cm H₂O of pressure was generated at the alveolar level secondary to momentum transfer. Consequently, the study suggests that most of the dynamic hyperinflation produced by TGI is secondary to decreased surface area of the trachea and outflow resistance to gas flow.

The rise in FRC during TGI is controlled by adjusting the ventilator-set positive end-expiratory pressure (PEEP) level. In order to maintain FRC constant between TGI and no TGI conditions, ventilator-set PEEP is decreased during TGI such that total PEEP (i.e., ventilator-set PEEP plus intrinsic PEEP [auto-PEEP]) remains constant. Alternatively, the effect of TGI on lung volume can be controlled to a certain extent by using reversed or reverse-thrust catheters. Reversing the flow so that the jet leaving the catheter tip discharges mouthward creates a Venturi effect that decreases dynamic hyperinflation caused by TGI (Fig. 3). However, in certain situations this effect can be large enough to actually decrease FRC during TGI. In that case, ventilator-set PEEP may need to be increased to counterbalance the effect of the reverse-thrust jet if decreased FRC is undesirable.

Catheter Design

Currently there is not a standard method of introducing the insufflation catheter into the trachea. In most studies a small-caliber catheter was introduced through an angled side-arm adapter attached to the endotracheal tube (ETT) and positioned just above the main carina. Catheter placement was usually performed with bronchoscopic guidance or estimated from a recent chest radiograph. This type of system is simple to construct and can be duplicated in most laboratories, but suffers from some drawbacks in the clinical setting. New ETT designs that incorporate channels within the endotracheal tube wall may solve many of the problems and simplify application of TGI and can be used to perform TGI in patients. Future clinical applications of TGI will probably use a modified ETT that incorporates the catheter in its wall, attached to a standardized circuit for gas delivery. The design and application of various TGI circuits are discussed in detail elsewhere in this issue of Respiratory Care.
Monitoring during Tracheal Gas Insufflation

Airway Opening Pressure and Lung Mechanics

Under baseline conditions, mean airway opening pressure (P_{ao}) and mean alveolar pressure (P_A) are related by the following expression:

\[P_{ao} = P_A + \frac{V_E}{60 \times (R_E - R_I)} \]

where \(R_E \) and \(R_I \) are the expiratory and inspiratory resistances, respectively, and \(V_E \) is the minute ventilation.\(^2^6\) Consequently, during mechanical ventilation, monitoring \(P_{ao} \) gives useful information regarding \(P_A \). During TGI, however, the jet stream increases flow through the ventilator circuit during expiration and creates a region of bidirectional flow within the airways. Both effects change the resistance characteristics of the respiratory system and modify the relationship between \(P_{ao} \) and \(P_A \) observed at baseline (ie, when \(V_E = 0 \) L/min). Since \(R_I \) increases during TGI, \(P_{ao} \) tends to underestimate \(P_A \) (and end-expiratory lung volume) when the system is switched from baseline to TGI conditions. In an experimental study, monitoring tracheal pressure 2 cm beyond the tip of the catheter seemed to accurately gauge lung volume changes at end-expiration, suggesting that tracheal pressures should be monitored beyond the jet stream during TGI.\(^3\) During pan-expiratory TGI, catheter flow ceases during inspiration, and inspiratory \(P_{ao} \) provides useful information regarding \(P_A \), as during CMV. In contrast, during continuous TGI, inspiratory \(P_{ao} \) (measured at the tip of the endotracheal tube) differs from the tracheal pressure (\(P_{trach} \), measured distal to catheter orifice). The magnitude of \(P_{ao} - P_{trach} \) during inspiration depends on the inspiratory flow through the circuit and circuit geometry spanning the two pressure measurement points, but is usually less than 3 cm H_{2}O. As the ventilator-set \(V_T \) is decreased with increasing \(V_E \), the difference between \(P_{ao} \) and \(P_{trach} \) approaches zero. However, during expiration under both continuous and expiratory TGI conditions, catheter flow pressurizes the respiratory system and, as a result, \(P_{ao} \) underestimates \(P_{trach} \). The magnitude of \(P_{ao} - P_{trach} \) during expiration increases with \(V_E \) and probably depends on the geometry of the system and the orientation of the catheter with respect to the trachea.

TGI may also interfere with the clinician’s ability to measure lung mechanics. Respiratory system compliance and auto-PEEP measurements require application of a pause at end-inspiration and/or at end-expiration. If catheter flow continues during these measurements, the pressure within the respiratory system builds up over time. Consequently, a plateau pressure cannot be obtained and, if unnoticed,
alveolar pressure can increase to hazardous levels. During pan-expiratory TGL, depending on the timing and nature of the signal that gates the solenoid to divert catheter flow to the atmosphere, these measurements can still be made safely.13,22 Nevertheless, it is advisable to test the TGL-ventilator system with a mechanical lung model under controlled conditions prior to measuring lung mechanics at the bedside.

Tidal Volume

Whenever catheter flow is delivered during inspiration, it contributes to total inspired \(V_t \). The contribution to total inspired \(V_t \) is eliminated if TGI is timed to occur only during expiration.13 Even then decompression of the TGI circuit into the ventilator circuit during the inspiratory phase of solenoid closure contributes to total inspired \(V_t \).20,27 In most TGI circuits, however, this volume is rather small (10–20 mL at \(V_c \) of 10 L/min). These problems are avoided if an independent measure of \(V_t \), such as inductive plethysmography, is used. The effect of TGI on total inspired \(V_t \) depends on the ventilator operation mode.

Flow-Controlled Volume-Cycled Ventilation

During continuous TGI, total inspired \(V_t \) is composed of two components: that delivered by the ventilator (\(V_{t,v} \)) and that delivered by the catheter (\(V_{t,c} \)). That is, \(V_t = V_{t,v} + V_{t,c} \). The contribution of continuous TGI to total inspired \(V_t \) can be estimated from the duration of inspiration (inspiratory time or \(T_{i} \)) and \(V_c \), because \(V_{t,c} = T_{i} \times V_c \). Consequently, during flow-controlled volume-cycled ventilation, total inspired \(V_t \) can be maintained relatively constant during continuous TGI by decreasing the ventilator-set \(V_t \) by an amount equal to \(V_{t,c} \).20

Pressure-Controlled Ventilation

During pressure-control ventilation (PCV), application of TGI does not change the total inspired \(V_t \); provided TGI does not pressurize the respiratory system beyond the set-pressure (\(P_{set} \), defined here as the end-inspiratory pressure during PCV). As \(V_c \) is increased, the ventilator-delivered \(V_t \) declines, but the total inspired \(V_t \) remains the same.8,20 The respiratory system behaves in this manner as long as \(V_{t,c} \) is less than the \(V_t \) generated by \(P_{set} \) under PCV conditions without TGI. If \(V_{t,c} \) exceeds the \(V_t \) generated by PCV in the absence of TGI, then TGI will overpressurize the circuit and peak \(P_{aw} \) will be greater than that produced by the ventilator-set pressure. Most ventilators allow pressures higher than \(P_{set} \) as long as \(P_{aw} \) remains below the high pressure limit of the ventilator. Consequently, excessive pressures can be produced within the respiratory system if the product \(V_c \times T_{i} \) is too large.9,22,20

When this happens, the \(P_{aw} \) time profile becomes a hybrid of PCV and constant-flow volume-cycled ventilation, resembling that generated during volume-assured pressure support ventilation. This problem can be circumvented by introducing a pressure-release valve into the ventilator circuit that dumps circuit pressure above a set threshold.20 New generation ventilators with active valves that allow expiratory flow during inspiration when \(P_{aw} \) exceeds \(P_{set} \) eliminate this problem by discharging TGI flow to the atmosphere when \(P_{aw} > P_{set} \) (Fig. 4).22

Monitoring Carbon Dioxide Elimination Efficacy of Tracheal Gas Insufflation

TGI modifies the profile of the expired-gas capnogram because fresh gas delivered by the catheter dilutes the \(CO_2 \) exhaled from the lungs. The capnogram measures exhaled \(CO_2 \) at the tip of the ETT and therefore monitors the exhaled \(CO_2 \) with a time (and volume) lag relative to the
catheter tip. Nevertheless, the exhaled-gas capnogram can be used qualitatively to gauge the completeness of expiratory washout. Clearly, if end-tidal carbon dioxide tension (P_{ETCO}) declines to very low values (< 3 mm Hg), expiratory washout is probably complete, and further increments in V_e may not impact P_{aco}, greatly. However, if more CO$_2$-laden gas is removed from the periphery of the lung by the distal effects of TGI as V_e is increased, P_{ETCO} may remain elevated. Consequently, the relationship between the efficacy of TGI and the capnographically measured CO$_2$ profile is quite complex. Nevertheless, certain observations can be made based on capnography.

The fraction of unperfused alveoli can be estimated in terms of P_{aco}, and average P_{ETCO} as: $(P_{\text{aco}} - P_{\text{ETCO}})/P_{\text{aco}}$. This ratio can be readily measured at the bedside by capnography and arterial blood gas analysis. Since increasing the fraction of unperfused alveoli decreases the efficacy of TGI (as measured by percentage change in V_D and P_{aco}, relative to baseline conditions), the ratio $(P_{\text{aco}} - P_{\text{ETCO}})/P_{\text{aco}}$ may provide useful clinical information. Indeed, in both animal and human studies this ratio was closely correlated ($r = 0.70$) with percentage reduction in P_{aco} from baseline during TGI. The exact role of capnography in monitoring the efficacy of TGI remains to be established, but available data suggest that it may be used to optimize V_e and ventilator settings.

Tracheal Gas Insufflation and Ventilator Interactions

Since TGI introduces an external flow source independent of the ventilator, it can adversely affect the ventilator’s ability to monitor pressures and volumes and may cause the ventilator to alarm incessantly. The presence of catheter flow during expiration disables the monitoring role of the expiratory pneumotachograph of the ventilator, causing some ventilators to alarm when the difference between the measured inspired volume and the exhaled volume exceeds a certain value. More importantly, the presence of an external flow that can pressurize the ventilator circuit interferes with the ventilator’s ability to detect a leak. Incompatibilities between the ventilator and TGI can usually be eliminated in external TGI systems during expiratory TGI if flow and P_{aco} are monitored at the tip of the ETT. Alternatively, internalizing the TGI circuit into the ventilator allows the ventilator to account for the TGI flow and can simplify ventilator-TGI interactions.

Clinical Implications

Carbon Dioxide Elimination

The effect of a given TGI-induced change in V_T and P_{aco}, depends on the P_{aco} and V_T/V_T values prior to the initiation of TGI, and on the effect of TGI on CO$_2$ production.

For a given fractional change in V_T, the percentage change in P_{aco} increases dramatically as V_T/V_T exceeds 0.70. This implies that the effect of TGI on P_{aco} is amplified as the respiratory system is allowed to operate at higher V_T/V_T (ie, permissive hypercapnia). Consequently, TGI becomes more effective in decreasing P_{aco} in the setting of hypercapnia.

In the setting of acute lung injury, part of the dead space resides in the alveoli as alveolar dead space. The alveolar gas originating from those ventilated but hypoperfused lung regions is CO$_2$-poor. Consequently, gas expired from alveolar dead space dilutes CO$_2$-laden gas residing in the proximal anatomic dead space. Consequently, the impact of washing proximal dead space free of CO$_2$ on alveolar ventilation diminishes. Adopting a permissive hypercapnia strategy increases the amount of CO$_2$ that can be removed from the proximal anatomic dead space and counterbalances the decreased CO$_2$ removal efficacy of TGI caused by increased alveolar dead space (Fig. 5). In most studies, when the initial P_{aco} (without TGI) was maintained at 60–80 mm Hg, TGI at 6–10 L/min was able to decrease P_{aco} by 15–30%.

As an adjunct to a pressure-targeted lung-protective ventilatory strategy, TGI can be used to pursue one of two goals. It can be used to limit the extent of hypercapnia and/or to control the rate of rise of P_{aco} while maintaining V_T and minute ventilation constant. Alternatively, it can be used to limit ventilatory distending forces (ie, allowing a reduction in V_T) while maintaining P_{aco} constant. Using TGI in a canine oleic acid-induced pulmonary edema model, adequate alveolar ventilation was maintained at much smaller V_T and pressures than required without TGI. Compared to CMV, the valved TGI catheter (which functioned as the ventilator in this setting) achieved the same ventilatory task at 35% of the V_T and 70% of elastic end-inspiratory pressure. Using a similar strategy, Kolobow et al demonstrated that they could adequately ventilate sheep that had undergone resection of 88% of their lung tissue, without resorting to excessive V_T or airway pressures.

Oxygenation

In normal dogs, TGI tended to reduce venous admixture (Q_V/Q_T) and increase arterial oxygen tension. In this experimental setting, most of the increase in arterial oxygen tension could be explained by the decrement in P_{aco}, caused by TGI. In 6 oleic acid-injured dogs, TGI did not improve arterial oxygen tension or Q_V/Q_T when V_T and FRC were kept constant. Current data suggest that TGI does not impact oxygenation, provided total inspired V_T and FRC are not augmented during application of TGI.
Work of Breathing

The minute ventilation-sparing effect of TGI may also be used to reduce work of breathing in some intubated patients. However, TGI may impair the ability of some patients to trigger the ventilator, because the patient's inspiratory effort must first outstrip catheter flow and overcome the dynamic hyperinflation caused by TGI in order to lower airway opening pressure below the trigger threshold. The net effect of TGI on work of breathing would depend on the interactions between TGI and the ventilator and on the efficiency of TGI in decreasing dead space and V_t requirements. Obviously, incorporating TGI into a flow-by system would preserve the combined benefits of flow-triggering and improved gas exchange associated with TGI. Patients who have neuromuscular weakness but relatively normal lung parenchyma and retain CO$_2$ because they can only generate small V_t (i.e., proximal anatomic dead space contributes substantially to V_t/V_t) are excellent candidates for TGI. Reverse-thrust TGI (i.e., with catheter flow directed toward the mouth) may also maintain the patency of the ETT by clearing tracheal secretions from the ETT lumen.

Potential Complications

Although a promising adjunct to CMV, TGI is not without potential complications. When high flows are delivered into the airways, potentially any obstruction to outflow of gas could cause lung overinflation within seconds and thus cause pneumothorax, pulmonary venous air embolism, and/or hemodynamic compromise. Esophageal pressure and/or chest wall monitoring may be required to monitor changes in lung volume. A second concern is bronchial mucosal damage by impact of the jet stream onto the bronchial mucosa, as well as the possible physical impact of the catheter tip from oscillation resulting from high flow. The force created by the jet stream impacting on the surface can be quite high and accounts for the bronchial mucosal damage observed in experiments during constant-flow ventilation. Proper humidification of the inspired gas is essential at such high flow rates. Long-term use of TGI may result in inspissation or retention of secretions, especially if the insufflated gas is not adequately humidified.

Summary and Future Directions

Experimental work over the last decade, both with in vitro and in vivo systems, has tremendously increased our understanding of the usefulness and limitations of TGI as an adjunct to mechanical ventilation. Clearly, the published clinical experience in mechanically ventilated patients is very limited but expanding rapidly. However, none of the clinical studies to date have explored the role of TGI...
in a lung-protective ventilatory strategy. The logical application of TGI in an acute respiratory distress syndrome patient is to limit P_{AICO_2}, V_T, or both. We are now in a position to safely apply TGI at the bedside to further improve ventilatory management of critically ill patients. However, routine bedside application of TGI awaits carefully performed clinical studies to determine its efficacy and safety profile.

Further experimental work is needed to enhance the operational characteristics of TGI and to develop its full potential in the clinical setting. Certain applications of TGI are yet to be developed, such as drug delivery systems based on TGI and TGI as a weaning tool. Innovations in combined ventilatory modalities, such as TGI with partial liquid ventilation, and utility of TGI in disease processes other than lung injury, such as bronchoconstriction, will also require further testing and development in experimental models.

REFERENCES

ANIMAL AND LUNG MODEL STUDIES OF TRACHEAL GAS INSUFFLATION

Clinical Studies of Tracheal Gas Insufflation

Lluis L Blanch MD PhD

Introduction
Physiologic Effects of Tracheal Gas Insufflation
Efficiency of Carbon Dioxide Removal
Tracheal Gas Insufflation in Patients with End-Stage Pulmonary Disease
Tracheal Gas Insufflation during Mechanical Ventilation: Clinical Studies
Weaning
Monitoring during Tracheal Gas Insufflation
Potential Complications
Summary

Tracheal gas insufflation (TGI) is an adjunct to mechanical ventilation that allows ventilation with small tidal volumes while carbon dioxide (CO$_2$) is satisfactorily cleared. Pioneering studies in healthy animals and in humans suffering respiratory failure showed that the expiratory flushing of proximal dead space decreased minute ventilation with no change in arterial partial pressure of carbon dioxide (P$_{aCO_2}$). Recent work indicates that conventional mechanical ventilation aided by TGI may represent a novel ventilatory strategy that succeeds in limiting both the distending forces acting on the lungs and the P$_{aCO_2}$ elevation of permissive hypercapnia. Furthermore, some studies suggest that weaning aided by TGI may allow a reduction in minute ventilation, P$_{aCO_2}$, physiologic dead space, and the patient’s respiratory demands. Clinical use of TGI requires careful monitoring of delivered volumes and pressures to ensure safe clinical application and to evaluate the effect on lung function. Finally, routine use of TGI in intensive care warrants further investigation to solve some technical problems and randomized clinical trials to confirm the beneficial effects in the absence of complications.

Key words: tracheal gas insufflation, clinical studies, mechanical ventilation, ventilator weaning. [Respir Care 2001;46(2):158–166]

Introduction

Extensive animal research suggests that lung injury and inflammatory response may be caused and perpetuated if mechanical ventilation results in alveolar overdistention and allows cyclic collapse and reflation of alveolar units with tidal breathing. Based on that work, lung-protective mechanical ventilatory strategies have been proposed for acute respiratory distress syndrome (ARDS). These strategies typically involve the use of small tidal volume (V$_t$) to avoid high alveolar pressures at end-inspiration and the resulting alveolar overdistention, and the use of high positive end-expiratory pressure (PEEP) levels to keep alveoli open at end-expiration, thus maintaining alveolar recruitment. Such ventilatory strategies may involve a decrease in alveolar ventilation and a significant increase in arterial partial pressure of carbon dioxide (P$_{aCO_2}$), a strategy that has been called permissive hypercapnia. Recently, 3 clinical trials showed that treatment with a ventilation approach designed to protect the lungs from excessive stretch resulted in improvements in several important clinical outcomes in patients with acute lung injury and in ARDS patients. Unfortunately, carbon dioxide (CO$_2$) retention must sometimes occur over brief inter-

Lluis L Blanch MD PhD is affiliated with the Intensive Care Department, Hospital de Sabadell, Sabadell, Spain.

A version of this report was given by Dr Blanch at the special conference, Tracheal Gas Insufflation: Current Status and Future Prospects, presented by the American Respiratory Care Foundation, August 19, 2000, in Dallas, Texas.

Correspondence: Lluis L Blanch MD PhD, Intensive Care Department, Hospital de Sabadell, Corporacio Parc Tauli, Parc Taulí s/n, 08208 Sabadell, Spain. E-mail: lb Blanch@cspt.es.
vals, which leads to unacceptably severe respiratory acidosis and is contraindicated in some patients.

Although permissive hypercapnia is generally well tolerated, it may not be acceptable in some patients in whom lung injury and brain injury coexist. Based on recent data, it would be advantageous to use a lung-protective strategy without respiratory acidosis. Tracheal gas insufflation (TGI) is an adjunct to mechanical ventilation that allows ventilation with small \(V_T \) while \(CO_2 \) is satisfactorily cleared.

Pioneering studies with healthy experimental animals and with humans suffering respiratory failure found that the expiratory flushing of proximal dead space decreased minute ventilation with no change in \(P_{aCO_2} \). Recent work indicates that conventional mechanical ventilation aided by TGI may represent a novel ventilatory strategy that succeeds in limiting both the distending forces acting on the lung and the \(P_{aCO_2} \) elevation of permissive hypercapnia.\(^9\)\(^-\)\(^12\)

Physiologic Effects of Tracheal Gas Insufflation

Tracheal gas insufflation applied together with conventional mechanical ventilation effectively reduces the size of the dead space compartment and improves overall \(CO_2 \) elimination by flushing with fresh gas the anatomic dead space normally laden with \(CO_2 \) during expiration. As a consequence, less \(CO_2 \) is recycled to the alveoli during the next inspiration and the ventilatory efficiency of each tidal inspiration is improved. Therefore, TGI reduces anatomic dead space and increases alveolar ventilation for a given frequency and \(V_T \) combination.\(^6\)\(^-\)\(^15\)\(^-\)\(^17\)

The main effect of TGI is to flush the dead space from the carina to the Y-piece of the ventilator circuit. TGI also has a distal effect that contributes to \(CO_2 \) removal. However, although the distal effect enhances \(CO_2 \) removal, the presence of the catheter and the jet effect oppose expiratory flow, favoring intrinsic positive end-expiratory pressure (auto-PEEP).\(^5\)\(^-\)\(^14\)\(^-\)\(^16\)

Efficiency of Carbon Dioxide Removal

Experimental studies with healthy animals have shown that TGI allows reduction of \(P_{aCO_2} \) during hypoventilation.\(^7\)\(^-\)\(^9\)\(^-\)\(^21\) This effect occurred similarly when the hypoventilation was caused either by a decrease in minute ventilation or an increase in respiratory rate at constant minute ventilation. Application of TGI allowed a decrease in \(V_T \) and a 25% reduction in airway pressures. In an experimental model of ARDS, Nahum et al\(^22\) found that increasing \(CO_2 \) elimination with 10 L/min of TGI allowed reduction of \(P_{aCO_2} \) from 55 mm Hg to 45 mm Hg while \(V_T \) was kept constant. However, the efficacy of TGI on \(P_{aCO_2} \) diminishes when an increased alveolar component dominates the total physiologic dead space. Nahum et al\(^23\) found that allowing \(P_{aCO_2} \) to rise to supranormal levels (a permissive hypercapnia strategy) counteracted the detrimental effect of increased alveolar dead space on the \(CO_2 \) removal efficiency of TGI.

\(CO_2 \) elimination efficiency is also determined by the position of the tracheal catheter, flush volume, and timing of the tracheal gas flow (continuous or expiratory). Nahum et al\(^22\) found that \(CO_2 \) elimination efficiency was greater when the distal tip of the TGI catheter was positioned 1 cm above the carina than when the catheter was placed more proximally.

The volume of gas injected per breath during expiration determines TGI efficiency. In a series of experiments, Ravenscroft et al\(^9\) found that, with or without lung deflation, the volume of gas flushed during the expiratory period determined the effectiveness of TGI, provided that inspired minute ventilation remained unchanged and end-expiration was included in the catheter flush period. Increasing catheter flow in clinical situations where only a brief expiratory time is available may maintain TGI efficiency. In fact, Nakos et al\(^14\) observed an inverse correlation between respiratory rate and \(P_{aCO_2} \), which indicates that longer expiratory times (or lower breathing frequencies) favor TGI efficiency (defined as reductions in \(P_{aCO_2} \) and the ratio of dead space to tidal volume \([V_D/V_T]\)). Moreover, for the same catheter injection flow and duration, the efficiency of TGI is much higher when catheter flushing is performed late in expiration.\(^13\) That investigation indicated that TGI efficiency is improved by including the end-expiratory segment of the cycle. If TGI is applied only early during expiration, the injected fresh gas is swept out with the discharging alveolar gas. TGI during late expiration flushes \(CO_2 \) from the anatomical dead space that would normally remain to be rebreathed on the next inspiration (Fig. 1).

Tracheal Gas Insufflation in Patients with End-Stage Pulmonary Disease

Continuous insufflation of fresh gas (oxygen/air) through an intratracheal catheter has been used in patients with end-stage pulmonary disease to provide continuous oxygen therapy and to decrease oxygen flow requirements.\(^25\)\(^-\)\(^28\) In patients with end-stage lung disease, TGI provides a method for oxygen delivery and confers the additional benefits of decreasing dyspnea and increasing exercise tolerance.\(^29\) The physiologic basis for these changes appears to relate to alterations in breathing pattern and gas exchange efficiency.

In tracheostomized, spontaneously breathing patients, Bergofsky and Hurewitz\(^25\) studied the physiologic effects of airway insufflation in patients with chronic \(CO_2 \) retention. A continuous flow of 4–5 L/min delivered to the tracheostomy tube produced a reduction in dead space, \(V_T \), and minute ventilation without affecting \(P_{aCO_2} \) in the acute state; in the chronic state it maintained or reduced \(P_{aCO_2} \), presumably be-
cause of reduced dead space. Those authors also found reduced oxygen consumption and CO₂ production with airway insufflation in patients who had the most severe form of chronic obstructive pulmonary disease. The decrease in metabolic rate without a change in PₐCO₂ suggested a reduction in the work of breathing (WOB) during TGI in spontaneously breathing patients. Interestingly, Hurwitz et al.²⁶ found that the application of airway insufflation in patients with advanced obstructive and restrictive lung disease produced either a reduction in minute ventilation with minimal changes of alveolar ventilation, or no variations in minute ventilation associated with an increase in alveolar ventilation. These different responses to dead space reduction suggest that breathing pattern is CO₂-driven in a subgroup of chronic patients, whereas other patients exhibit a breathing pattern modulated by factors such as lung parenchymal receptors, diaphragmatic tension, and/or hyperinflation.¹⁰⁻¹¹

In addition to the effects on gas exchange, minute ventilation, and dead space, TGI resulted in decreased oxygen cost of breathing in spontaneously breathing patients. Benditt et al.²⁷ found that transtracheally administered gas reduced the oxygen cost of breathing (estimated by the pleural pressure time index) and changed the respiratory pattern of the diaphragm (diaphragm tension time index) to a less demanding pattern (Fig. 2). These findings helped to explain the improvements in exercise tolerance and decreased dyspnea and supported the use of transtracheal gas therapy for indications other than oxygenation.

Tracheal Gas Insufflation during Mechanical Ventilation: Clinical Studies

A number of studies have been published on the effect of TGI in patients receiving mechanical ventilation. The majority of the studies have been performed in ARDS patients and focused to demonstrate a reduction in V₇ and consequently on airway pressure while PₐCO₂ was maintained constant or reduced during permissive hypercapnia.⁹⁻¹²,³² Despite the fact that TGI in patients receiving mechanical ventilation was first tested in 1969,¹³ level I studies are still lacking.

In 1969, Stresemann et al.¹⁴ tested the efficacy of continuous and expiratory TGI in two patients with inspiratory positive pressure breathing and observed reduced PₐCO₂ at 18 L/min of insufflated tracheal flow. This was the first evidence that washout of anatomical dead space was useful in acute respiratory failure. In patients with a variety of lung disorders, Ravenscraft et al.¹⁵ studied the effect of continuous flows (2, 4, or 6 L/min) delivered through a catheter positioned 1 cm or 10 cm above the carina. Over the range of flows tested, CO₂ production and peak and mean airway pressures did not change, and PₐCO₂ exhibited a 15% reduction with the best combination of insufflated flow (6 L/min) and distance (1 cm from the carina) (Fig. 3). A similar study performed by Saura et al.¹¹ also found that a continuous inspiratory flow of 6 L/min permitted a 20% reduction of dead space and PₐCO₂. Remarkably, at 6 L/min TGI flow, plateau pressures slightly increased, suggesting that a certain degree of hyperinflation was caused by TGI.

In ARDS patients, part of the dead space resides in the alveoli as alveolar dead space. The alveolar gas originating from those ventilated but hypoperfused lung regions is CO₂-poor, diminishing the impact on alveolar ventilation of washing proximal dead space free of CO₂. Adopting a permissive hypercapnia strategy increases the amount of CO₂ that can be removed from the proximal anatomic dead space and counterbalances the decreased CO₂ removal efficacy of TGI caused by increased alveolar dead
During permissive hypercapnia in ARDS patients, Kal-{
}ton et al.12 found that expiratory washout of 15 L/min was
extremely useful to reduce P_{aCO_2} (by 30\%) and to signif-
ically increase arterial partial pressure of oxygen (from
205 mm Hg to 296 mm Hg). The reduced P_{aCO_2} accom-
panied an increase in plateau pressure, from 26 cm H$_2$O to
32 cm H$_2$O. Substantial increase in airway pressure and
lung volume is a well-known side effect of TGI and cor-
relates with the flow used.20,33 When insufflation of gas is
limited to the expiratory phase, V_T remains virtually un-
changed during volume-control ventilation, but airway
pressures can still increase through expiratory flow limita-
tion and auto-PEEP. Increase in lung volume caused by
TGI application is a serious limitation of the technique and
should be avoided. Solutions to minimize expiratory TGI-
induced auto-PEEP include using lower TGI flows, deliv-
ering TGI during pressure-control ventilation, and optimi-
zation of mechanical ventilation during TGI application.
During pressure-control ventilation, TGI-induced increase
in airway pressure automatically results in decreased V_T, and
the lack of expiratory TGI-induced auto-PEEP is associ-
ated with reduced efficiency of CO$_2$ elimination.35
Likewise, if TGI flow is reduced, the ability to clear CO$_2$
is also diminished.

Optimization of mechanical ventilation appears to be a
suitable method to deliver a pressure-limited ventilatory
strategy combined with TGI while avoiding auto-PEEP and
the deleterious effects of hypercapnia in patients with

![Graph showing percent reduction in arterial partial pressure of carbon dioxide (P_{aCO_2}) from baseline value as a function of catheter flow.](image)

Fig. 3. Percent reduction in arterial partial pressure of carbon dioxide (P_{aCO_2}) from the baseline value as a function of catheter flow. Distal and proximal catheter positions were 1 cm and 10 cm above the carina, respectively. Increasing catheter flow from 2 L/min to 6 L/min caused a reduction in the percent change of P_{aCO_2} from baseline at both catheter positions. (From Reference 9, with permission.)

![Graph showing percent change in tidal volume (V_T) and partial pressure of carbon dioxide (P_{aCO_2}) from baseline value as a function of catheter flow.](image)

Fig. 4. Left panel: Effect of catheter flow on arterial partial pressure of carbon dioxide (P_{aCO_2}) while tidal volume (V_T) was maintained constant. Right panel: Percent reduction in V_T from baseline value as a function of catheter flow, while P_{aCO_2} was maintained constant. Tracheal gas insufflation can be used to decrease P_{aCO_2} or to minimize the forces (alveolar pressure) acting on the lungs. (From Reference 10, with permission.)

Clinical Studies of Tracheal Gas Insufflation

Respiratory Care • February 2001 Vol 46 No 2
severe ARDS. Richiecour et al.12 found that the combination of increasing respiratory rate to the limit of auto-PEEP, removing the tubing connecting the Y-piece to the endotracheal tube (ETT), and expiratory washout of 15 L/min produced a significant reduction in P_{ACO_2}, from 84 mm Hg during conventional ventilation to 45 mm Hg. The combination of expiratory washout and optimization of mechanical ventilation invariably originated auto-PEEP, but the concomitant decrease in external PEEP allowed a constant total PEEP and plateau pressures during the different treatments (Fig. 5). In a study by Richiecour et al.,12 oxygenation did not improve, suggesting that expiratory TGI per se has no direct effect on alveolar recruitment when auto-PEEP does not induce an increase in mean airway pressure. The combination of TGI with limited pressure-control ventilation has been proposed as an alternative to extracorporeal or intracaval support for ARDS patients who are highly hypercapnic and hypoxic.36

The effect of different gas mixtures (helium and oxygen) during TGI application has been studied in patients suffering respiratory failure.37 Helium is an inert gas that has a much lower density than oxygen or air. When given at the same flow as a nitrogen/oxygen mixture, a helium/oxygen mixture produces a much lower Reynolds number and laminar flow.38 In a study by Pizov et al.,37 TGI with helium was more effective than TGI with oxygen in treating hypercapnia, because the use of helium leads to a lesser increase in airway pressure accompanying the decrease in P_{ACO_2} (Fig. 6). Since the helium/oxygen combination for TGI application has the potential to decrease arterial partial pressure of oxygen, precautions should be taken in the use of helium, particularly in patients who require a high fraction of inspired oxygen to maintain adequate oxygenation.

One of the indications for the use of TGI is the presence of high airway pressures that cannot be reduced as a result of the contraindication of hypercapnia. In the context of lung injury in association with head injury, the aim of TGI is to decrease airway pressures while avoiding the result-
ing increase in $P_{\text{a}}O_2$. Elevated intracranial pressure appears to be the only absolute contraindication to permissive hypercapnia. Nevertheless, neurologic patients with head trauma and severe ARDS complicated by barotrauma need a concomitant management of raised intracranial pressure and raised airway pressure. Levy et al. found in two patients suffering severe ARDS that the introduction of TGI decreased $P_{\text{a}}CO_2$ by 17%, intracranial pressure by 26%, and increased calculated cerebral perfusion pressure. Although the report of Levy et al. is anecdotal, it constitutes a firm basis for future research in that type of patient.

Weaning

Liberation from mechanical ventilation is an easy process for most patients. In recent clinical trials, between 60% and 80% of patients could be extubated directly from full ventilatory support. However, in patients who have undergone prolonged ventilatory support, weaning can be difficult. Failure of the respiratory muscle pump is probably the most common cause of failure to wean from mechanical ventilation. Indeed, chronic obstructive pulmonary disease patients who subsequently fail a trial of weaning exhibit not only an almost immediate rapid and shallow breathing when ventilatory support is discontinued but also a progressive worsening of pulmonary mechanics, with inefficient CO$_2$ clearance, in comparison with those chronic obstructive pulmonary disease patients who are successfully extubated after the spontaneous breathing trial. Deterioration of respiratory system mechanics in patients who fail the weaning trial is characterized by increased auto-PEEP, increased inspiratory resistance, and decreased dynamic lung compliance. Thus, inefficient CO$_2$ clearance in the failing group appeared to be a consequence of worsened pulmonary mechanics with increased energy expenditure and rapid shallow breathing, because the decreased V_T caused an increase in dead space ventilation. In this context, TGI could have a role as an adjunct to ventilator weaning.

Cereda et al. studied the effect of TGI combined with continuous-flow positive airway pressure (CPAP) on the effort of breathing in spontaneously breathing sheep with acute lung injury. They found that the beneficial physiologic effects of TGI on minute ventilation and gas exchange were followed by a decrease in the inspiratory work of breathing. Remarkably, no additional benefit was observed from raising insufflation flow from 10 L/min to 15 L/min. These authors attributed the beneficial effect of TGI with CPAP on effort of breathing to a favorable balance between decreased ventilatory requirement and low work load superimposed by the apparatus and TGI. In fact, with CPAP delivered via mechanical ventilator in combination with TGI, additional inspiratory effort is required to overcome the insufflation flow and trigger the ventilator valves. Hoyt et al. nicely showed in a bench study that TGI might interfere with ventilator triggering at low peak inspiratory

Fig. 7. Flow and inductive plethysmographic lung volume tracing in a mechanically ventilated patient (pressure-support ventilation [PSV] of 4 cm H$_2$O) during panexpiratory tracheal gas insufflation (TGI) of 8 L/min. In 6 out of 11 breaths, TGI flow met the patient's inspiratory flow demand and provided the total inspiratory volume for the breath and the ventilator was not triggered. (From Reference 46, with permission.)
flow rates, which suggests that weak patients may fail to open the demand valve of the CPAP system during TGI at high catheter flow rates (Fig. 7). Based on the hypothesis that TGI has the potential for decreasing anatomical dead space, enhancing gas mixing, and possibly reducing WOB, several authors have tested the effects of TGI on lung function in patients undergoing weaning from mechanical ventilation. A study by Nakos et al.\(^\text{24}\) found that \(V_T\), minute ventilation, \(P_{aCO_2}\), and physiologic dead space were reduced in a flow-dependent manner when gas was delivered through an oral-tracheal tube. Moreover, they found that distal positioning of the TGI catheter was more effective than proximal positioning and that the effects were less effective in patients with tracheostomy. Interestingly, the improvement in ventilatory efficiency resulting from the functional reduction of dead space allowed for a decrease in \(P_{aCO_2}\) at the same respiratory rate and at lower \(V_T\). These data suggest that inspiratory WOB was also reduced, since \(V_T\) was significantly reduced. In a preliminary work,\(^\text{47}\) we studied the effects of expiratory TGI during CPAP on 6 ready-to-wean patients. Expiratory TGI of 8 L/min decreased the pressure time product of the diaphragm in 5 out of 6 patients, reduced \(V_T\), and caused no changes in respiratory rate or \(P_{aCO_2}\). Data from those studies\(^\text{24,47}\) suggest that expiratory TGI might help patients who have difficulties during weaning.

Monitoring during Tracheal Gas Insufflation

TGI is a simple and apparently safe method to reduce both minute ventilation and \(P_{aCO_2}\). Regardless of the approach used, TGI has the potential to alter volumes and airway and alveolar pressure and requires careful monitoring of delivered volumes and pressures to ensure safe clinical application and to evaluate the effect on lung function. Moreover, the position of the TGI catheter inside the ETT should be carefully controlled. The presence of a catheter inside the ETT may increase both inspiratory and expiratory resistance, particularly when small endotracheal or tracheostomy tubes are used.\(^\text{6,13,14,19}\) Lucangelo et al.\(^\text{48}\) studied the air flow resistance of a 2.7 mm external-diameter catheter placed inside ET Ts of various sizes and found that resistance differed markedly in the various tube sizes and flows tested.

During continuous TGI, total \(V_T\) is the sum of ventilator-derived volume plus the additional volume delivered by TGI. The difference between the pre-programmed ventilator \(V_T\) and the ventilator-delivered volume plus the contribution of volume from the TGI catheter can adversely affect the ability of the ventilator to monitor pressures and volumes, calibrations, and leak detections, and may cause the ventilator to alarm non-stop. The measurement of auto-PEEP by the end-expiratory occlusion technique may cause a dramatic elevation of lung volume if TGI flow is not simultaneously interrupted. The same effect would occur with continuous TGI during end-inspiratory occlusion.\(^\text{6,19}\)

The efficacy of TGI can be monitored by capnography. Exhaled-gas capnograms provide an indicator of the effect of TGI on the \(CO_2\) concentration of the gas remaining in the proximal anatomic dead space compartment at the onset of inspiration (see Fig. 1).\(^\text{9,11}\) Although in patients with respiratory failure the partial pressure of end-tidal carbon dioxide (\(P_{ETCO_2}\)) is a poor estimate of \(P_{aCO_2}\),\(^\text{49,50}\) TGI-induced changes in \(P_{ETCO_2}\) correlated significantly with changes in \(P_{aCO_2}\), justifying routine measurement of \(P_{ETCO_2}\) during TGI application, as a marker of its effectiveness (Fig. 8).\(^\text{9,11,23}\)

Potential Complications

Delivering catheter gas at higher flows needs to be examined with regard to the need for humidification and the potential for tracheal damage with long-term use. The presence of a catheter inside the ETT may complicate suction of respiratory secretions and sputum removal.

TGI has the potential to increase end-expiratory lung volume in a flow-dependent fashion or catheter design.\(^\text{15,20,21,32,51}\) Catheter flow can increase alveolar pressure in 3 ways.\(^\text{8}\) First, part of the momentum of the discharging jet stream is transferred to the alveoli. Second, placement of the catheter decreases the cross sectional area of the trachea available for expiratory flow, effectively increasing expiratory resistance. Third, catheter flow through the ETT, expiratory circuit, and expiratory valve during expiration builds a back pressure at the airway opening, which impedes expiratory flow from the lung.
Finally, a complete obstruction of the outflow can cause overinflation of the lungs in seconds, with the potential of pneumothorax or hemodynamic compromise.

The development of lung hyperinflation can be effectively controlled by decreasing external PEEP to counterbalance the increase in auto-PEEP so that total PEEP is kept constant. Overpressurization can be identified by examining the airway pressure tracing and can be remedied by placing a pressure-relief valve in the ventilator circuit to dissipate insufflated flow that produces excess pressure. Other authors have designed systems that allow increase of CO₂ clearance without the risks of hyperinflation. De Robertis et al. studied the combination of aspiration of anatomic and instrumental dead space in the late part of expiration and replaced with fresh gas through the inspiratory line of the ventilator. This aspiration system allowed reductions in airway pressure and kept P_{aco₂}, constant in healthy humans and in ARDS patients. The aforementioned aspiration system has the potential to avoid the problems associated with jet streams of gas or with gas humidification, without developing auto-PEEP. Finally, Takahashi et al. observed that the combination of TGI and tracheal gas exsufflation allowed precise control of end-expiratory lung volume while providing the most effective CO₂ elimination.

Summary

Tracheal gas insufflation is a promising complementary technique to mechanical ventilation. TGI is very effective during permissive hypercapnia in ARDS patients, diminishing the complications associated with both mechanical ventilation and respiratory acidosis. Furthermore, some studies suggest that weaning aided by TGI may reduce respiratory demand. However, routine use of TGI in intensive care warrants further investigation to solve some technical problems and to confirm the beneficial effects in the absence of complications with randomized clinical trials in larger groups of patients receiving mechanical ventilation.

REFERENCES

56. Takahashi T, Bugedo G, Adams AB, Bliss PL, Marini JJ. Effects of tracheal gas insufflation and tracheal gas exsufflation on intrinsic positive end-expiratory pressure and carbon dioxide elimination. Respir Care 1999;44(8):918-924.
Complications of Tracheal Gas Insufflation

Robert M Kacmarek PhD RRT FAARC

Introduction

Altered Airway Pressures and Volumes
- Tracheal Gas Insufflation System
- Peak System Pressure
- Correction of Inspiratory Pressure Changes
- Alteration in Total Positive End-Expiratory Pressure

Tracheal Gas Exsufflation
Triggering
Humidification
Airway Trauma and System Obstruction
Monitoring
The Ideal Tracheal Gas Insufflation System

Numerous reports of patient, lung model, and animal use of tracheal gas insufflation (TGI) have appeared in the literature over the past 10 years. However, no commercial TGI system is available. As a result, extreme care must be exercised if attempts are made to provide TGI. Numerous problems with noncommercial systems have been identified. Continuous-flow TGI results in an increase in peak pressure and delivered tidal volume. The use of a flow-limiting or pressure relief valve or a ventilator with an exhalation valve active during exhalation minimizes these problems. Ideally, TGI should only be activated during the inspiratory phase. However, this requires that the TGI system be integrated with the mechanical ventilator. In addition, appropriate system monitoring should be available, including measurement of total positive end-expiratory pressure, peak inspiratory pressure, and tidal volume, and there should be a method of identifying increased carinal pressure and deactivating the TGI system if an obstruction occurs proximal to the point of TGI injection. As a result of the potential complications of TGI, this technique cannot be recommended for routine use until commercial systems are available.

Key words: tracheal gas insufflation, complications, mechanical ventilation, positive end-expiratory pressure, PEEP, airway trauma. [Respir Care 2001;46(2):167-176]

Introduction

Over the last 10 years much interest has focused on the potential for mechanical ventilation to induce lung injury similar in pathophysiology to that of acute respiratory distress syndrome. Based on the results of recent clinical trials, it has become the standard of care to ventilate patients with small tidal volumes (VT) (4-8 mL/Kg) and low peak alveolar pressures (≤ 30-35 cm H2O). However, even if respiratory rate is increased, adequate carbon dioxide (CO2) elimination may not be possible or higher-than-desired airway pressure might be the only option. Permissive hypercapnia has been promoted as an alternative to increasing VT or airway pressures, but is unacceptable in patients with increased intracranial pressure or concomitant metabolic acidosis. In addition, concerns about long-term neurologic sequelae have prompted efforts for alternatives.

One method of enhancing CO2 elimination without raising VT or airway pressure is the flushing of mechanical and anatomic dead space by a secondary independent gas flow at the carina—tracheal gas insufflation (TGI). This...
Complications/Problems during Tracheal Gas Insufflation

- Altered airway pressures and volume
- Triggering
- Humidification
- Airway trauma/system obstruction
- Monitoring

The technique is not new; it was originally proposed as an adjunct to mechanical ventilation in 1969 by Stresemann and Sattler. However, in spite of information regarding the use of TGI available for more than 30 years, there are no commercially available systems to provide TGI.

The primary reason why TGI has not become part of common clinical practice is the complications and problems observed during the use of TGI (Table 1). Many of these problems have simple-to-engineer solutions, but some may be life-threatening if not appropriately monitored and alarmed or if system-interrupt algorithms are not standard. This article discusses the problems inherent in TGI systems and methods to avoid those problems.

Altered Airway Pressures and Volumes

Depending on the TGI system used and the type of TGI catheter placed, an increase or decrease in peak alveolar pressure or end-expiratory pressure may occur during TGI.

Tracheal Gas Insufflation System

Numerous approaches to TGI and a number of different catheter types have been documented in the literature (Table 2). Catheter designs either direct gas flow toward the carina (direct-flow TGI [d-TGI]) or toward the ventilator circuit (reverse TGI). TGI delivery systems are either continuous or phasic (expiratory only) and provide either insufflation (TGI) or exsufflation (TGE).

Peak System Pressure

As illustrated in Figure 1, regardless of whether volume-control or pressure-control is used, continuous-flow TGI (c-TGI) increases peak airway pressure, peak carinal pressure, and end-inspiratory pressure, as well as increasing or decreasing total positive end-expiratory pressure (PEEP). In association with these changes is an increase in Vf. During volume-controlled ventilation (see Fig. 1A), the flow from the c-TGI system is additive to the flow from the ventilator. With pressure-controlled ventilation, the addition of the c-TGI flow causes the flow from the ventilator to more rapidly decelerate, and once the ventilator flow reaches zero a square wave flow pattern entirely from the c-TGI system persists. Conceivably, in a patient with a high system compliance, low airways resistance, and short inspiratory time (Tt), inspiratory pressure and Vf might not be altered, but this is highly unlikely. In general, the impact of c-TGI on inspiratory airway pressure is increased: the stiffer the lung, the greater the airways resistance, and the longer the Tt.

Correction of Inspiratory Pressure Changes

A number of different techniques are available to avoid increased inspiratory airway pressure and Vf during TGI. Figure 2 depicts the effects of expiratory TGI (e-TGI) and volume-adjusted TGI (a-TGI). Note that with each of these techniques the inspiratory phase of ventilation is unaffected by the TGI flow. This is always true with e-TGI, but only applicable in limited circumstances with a-TGI. First, a-TGI can only be used with volume-controlled ventilation. Second, the interrelation between set Vf, TGI flow, and Tt limits when a-TGI can be used. For example, if Vf is 500 mL and TGI flow is 18 L/min with a Tt of 1.5 seconds, the volume added by the TGI system during inspiration is 450 mL. Thus, setting the ventilator Vf at 50 mL would maintain Vf delivery without pressure change. However, if the Vf were 400 mL instead of 500 mL, it would be impossible to adjust the delivered Vf to compensate for the volume delivered by the TGI system within the 1.5 second Tt.

The use of c-TGI requires interaction of the mechanical ventilator and the TGI system. That is, activation of TGI flow must be coordinated with the onset and termination of the expiratory phase. Electronic coupling of the TGI system and the ventilator’s exhalation valve will accomplish the appropriate interaction, but coordination could

<table>
<thead>
<tr>
<th>Table 1. Complications/Problems during Tracheal Gas Insufflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Altered airway pressures and volume</td>
</tr>
<tr>
<td>• Triggering</td>
</tr>
<tr>
<td>• Humidification</td>
</tr>
<tr>
<td>• Airway trauma/system obstruction</td>
</tr>
<tr>
<td>• Monitoring</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• TGI: Tracheal gas insufflation</td>
</tr>
<tr>
<td>• c-TGI: Continuous-flow tracheal gas insufflation during both inspiration and expiration</td>
</tr>
<tr>
<td>• a-TGI: Volume-adjusted continuous-flow tracheal gas insufflation; tidal volume adjusted by TGI volume provided during inspiration</td>
</tr>
<tr>
<td>• e-TGI: Expiratory phase-only tracheal gas insufflation</td>
</tr>
<tr>
<td>• d-TGI: Direct tracheal gas insufflation; flow directed toward carina</td>
</tr>
<tr>
<td>• r-TGI: Reverse tracheal gas insufflation; flow directed toward ventilator circuit</td>
</tr>
<tr>
<td>• TGE: Tracheal gas exsufflation: expiratory phase only</td>
</tr>
</tbody>
</table>

168 RESPIRATORY CARE • FEBRUARY 2001 VOL 46 NO 2
Fig. 1 A: Flow-versus-time tracings of delivered gas flow measured both at airway openings and distal to the entrance of the tracheal gas insufflation (TGI) flow in both pressure-controlled ventilation (PCV) and volume-controlled ventilation (VCV) with and without the addition of 12 L/min TGI flow in a lung model. B: Pressure-versus-time tracings of system pressure measured both at airway opening (PaO) and distal to the entrance of the TGI flow (Palv) in both PCV and VCV, with and without the addition of 12 L/min TGI flow in a lung model. (From Reference 10, with permission.)
also be accomplished by the measurement of flow at the patient airway and activation of the TGI system based on directional changes in delivered flow.

Placement of a pressure relief or flow relief valve into the ventilator circuit would also prevent airway pressure and V_T from increasing during pressure-controlled ventilation.19,20 Although it is feasible to use these valves during volume-controlled ventilation, it is difficult to ensure constant V_T. The airway pressure waveform tends to look like a pressure-controlled breath, and V_T is no longer the target. When a pressure relief valve is used, it functions most effectively when placed in the inspiratory limb,19,20 whereas a flow relief valve needs to be placed in the expiratory limb (Edgar Delgado, University of Pittsburgh Medical Center, 2000, personal communication) for maximum effectiveness.

Pressure and volume increases can also be prevented during c-TGI by the use of a ventilator that has an exhalation valve active during inspiration in the pressure-controlled mode.11,21 The only two ventilators that include this feature at present are the Dräger Evita and the Nellcor Puritan Bennett 840. With an exhalation valve active during inspiration, pressure exceeding the set pressure control level is released to the atmosphere.

Continuous TGI with a pressure relief valve, flow relief valve, or exhalation valve active during inspiration avoids the development of excess system inspiratory pressure and a higher V_T than during pressure-control ventilation (PCV) without TGI. However, the gas flow pattern delivered to the patient will be different from that without the use of TGI.10 Ventilator flow decreases more rapidly with c-TGI (see Fig. 1B) and the flow pattern during PCV becomes similar to square wave flow, never decreasing to zero flow prior to the end of inspiration.

Alteration in Total Positive End-Expiratory Pressure

During d-TGI, total PEEP is increased (Figs. 3 and 4).11,12 This occurs regardless of whether TGI is continuous,11 or during exhalation only,12 or whether V_T is adjusted (a-TGI).12 The reason for this is that the TGI flow directed toward the carina acts as a threshold resister. The greater the d-TGI flow, the greater the potential for increased total PEEP. As noted in Figures 3 and 4, lung mechanics affects the development of TGI-induced PEEP, but to a minor extent. The more highly compliant the lung, the greater the TGI-induced PEEP developed. As noted primarily in Figure 3, volume-controlled ventilation results in greater TGI-induced PEEP than pressure-controlled ventilation, because with volume-controlled ventilation and c-TGI, V_T is increased more than with PCV, because there is no mechanism to decrease ventilator-delivered flow, as there is in PCV. In both Figure 3 and Figure 4, T_i appears to affect TGI-induced PEEP, but the increased PEEP associated with increased T_i is a result of both air trapping and intrinsic PEEP (auto-PEEP),10 and during c-TGI a greater V_T is delivered with the longer T_i. With c-TGI, TGI-induced PEEP is not affected by T_i unless the longer T_i causes air trapping and auto-PEEP.12,13

The effects of TGI-induced PEEP can be corrected by careful monitoring of end-inspiratory plateau pressure (P_{plat}) and V_T (Table 3).10–12 During volume-controlled ventilation the development of TGI-induced PEEP (as with auto-PEEP) causes P_{plat} to increase. Reducing applied PEEP until P_{plat} returns to the level measured before TGI was started restores the total PEEP level to that set before TGI.11,13 Similarly, during pressure-controlled ventilation the development of TGI-induced PEEP causes V_T to decrease. Reducing the applied PEEP until V_T is restored to the pre-TGI V_T returns total PEEP to the pre-TGI level.13

During both c-TGI and d-TGI, similar adjustments can be made, but the continuous flow during c-TGI prevents precise measurement of P_{plat} or V_T, preventing accurate corrections.

Reverse-flow TGI (r-TGI) does not result in an increase in total PEEP, but rather a decrease in total PEEP.11,13 The reverse flow of high-velocity gas creates a jet drag effect at the catheter orifice, decreasing total PEEP. The magnitude of the decrease depends on catheter design and TGI gas flow velocity, not gas flow volume. Systems with large-bore TGI catheters alter total PEEP minutely. In at least one comparison, similar TGI flows resulted in approximately 3.0 cm H$_2$O PEEP increase with direct flow, but less than 1.0 cm H$_2$O decrease with reverse-flow.11

The decrease in PEEP with r-TGI can be corrected in a manner similar to d-TGI. During volume-controlled ventilation the applied PEEP is increased until the pre-e-TGI P_{plat} is restored, whereas during pressure-controlled ventilation the applied PEEP is increased until the pre-e-TGI V_T is restored (see Table 3).

Tracheal Gas Exsufflation

By definition, TGE is applied only during the expiratory phase.14–16 A negative pressure is applied to the exsufflation catheter, removing gas from the lungs. As expected, this does not affect inspiratory pressures and volumes but does decrease PEEP. The effect on PEEP depends on catheter design, catheter exsufflation velocity, and flow. When a similar catheter is used for e-TGI and TGE with the same insufflating and exsufflating velocities, the increase and decrease in PEEP are of similar magnitude.14 As with r-TGI, the PEEP decrease seen during TGE can be corrected by adjusting applied PEEP (see Table 3). With volume-controlled ventilation, increase applied PEEP until the pre-TGE P_{plat} is reestablished. With pressure-controlled ventilation, adjust applied PEEP until the pre-TGE V_T is reestablished.
Fig. 2. A: Flow-versus-time tracings of delivered gas flow measured both at the lung model (V_{in}) and at airway opening (V_{aw}) in pressure-controlled ventilation (PCV) (left panels) and volume-controlled ventilation (VCV) (right panels), with and without the addition of tracheal gas insufflation flow. B: Pressure-versus-time tracings of system pressure measured both at the lung model (P_{aw}) and at airway opening (P_{so}) in PCV (left panels) and VCV (right panels), with and without the addition of tracheal gas insufflation flow. Note that there is considerable overlap among the curves for each tracheal gas insufflation mode. Lung mechanics were set at: compliance $= 20$ mL/cm H$_2$O, resistance $= 20$ cm H$_2$O/L/s, tracheal gas insufflation flow $= 8$ L/min, and inspiratory time $= 1.5$ seconds. (From Reference 12, with permission.)
Complications of Tracheal Gas Insufflation

As shown in Figure 3, TGI flow at the end of the expiratory phase may prevent ventilator triggering in certain patients. However, others have shown that adequate gas exchange can be maintained in spite of the TGI flow in patients receiving both continuous positive airway pressure and assisted ventilation. The patients most likely to be affected by the TGI flow are those with diminished ventilatory drive.

The problems associated with triggering can be totally eliminated if the TGI flow is stopped before the end of the expiratory phase or if the TGI flow is coordinated with the ventilator's flow-triggering mechanism. If the ventilator considers the TGI flow in its flow-triggering algorithm, the end-expiratory bias flow from the TGI system can be compensated, and triggering would thus be unaffected.

Reverse TGI or TGE may cause auto-triggering. The sub-baseline end-expiratory pressure created by the TGE system would be expected to trigger the ventilator. As with

Fig. 3. Changes in total positive end-expiratory pressure (ΔPEEP) from baseline measurements (zero tracheal gas insufflation flow) at 4 inspiratory times (Ti) for 3 lung mechanics setting in a lung model. Only mean values are listed and all values are ± 0.5 cm H2O standard deviation. Tracheal gas insufflation flow values are in L/min. Clear bars indicate pressure-controlled ventilation. Black bars indicate volume-controlled ventilation. Comp = compliance. Res = resistance. (From Reference 10, with permission.)
TGI, integration of the TGE system with the ventilator’s triggering algorithm would allow for appropriate triggering in spite of the TGE or r-TGI flow.

Humidification

Appropriate humidification of the insufflated gas can be a major problem, especially when d-TGI is used with a very small-bore catheter. Pressures greater than 10 psi may be needed to maintain TGI flow through some catheters. This demands the development of humidification systems capable of tolerating this high pressure. None of the currently available ventilator humidifiers are capable of withstanding this pressure. Humidification systems specifically designed for TGI need to be developed.

Direct-flow or reverse-flow e-TGI minimizes the problems with gas humidification, but a humidifier is still necessary. With TGE, no gas is insufflated, and with r-TGI or d-TGI, the insufflated flow is primarily moved into the ventilator circuit. However, since r-TGI or d-TGI may

Fig. 4. Changes in total positive end-expiratory pressure (ΔPEEPi) from baseline (zero tracheal gas insufflation flow) at 4 inspiratory times (T₁) for 3 lung mechanics settings. Only the mean values are listed. All values are ± 0.1 (SD) cm H₂O. Comp = compliance. Res = resistance. (From Reference 12, with permission.)
Airway Trauma and System Obstruction

Airway trauma is expected primarily when direct-flow catheters that have their distal tips outside the artificial airway are used to deliver TGI. When this occurs, the high-velocity gas flow may be directed to the wall of the trachea, causing erosion of the mucous membrane, as has been observed with jet ventilation. In addition, the further the catheter tip is from the distal end of the artificial airway, the greater the likelihood that the tip of the catheter will wipe back and forth in the airway, traumatizing the trachea. Large-bore catheters, catheter tips located within the artificial airway, r-TGI, and TGE all minimize the likelihood of tracheal injury.

A major concern with all TGI systems is the development of a mucus ball at the end of the TGI catheter or an obstruction in the artificial airway because of mucosal drying. Either of these situations would be catastrophic if it resulted in complete obstruction of the airway. Regardless of the TGI system or catheter used, it is essential to have a mechanism to identify increased pressure at the

desiccate secretions lining the endotracheal tube, appropriate humidification is required.

Table 3. Correction of Positive End-Expiratory Pressure Arising from Expiratory-Phase Tracheal Gas Insufflation or Exsufflation

<table>
<thead>
<tr>
<th>VCV with Direct TGI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• P_{PLAT} increased by TGI-induced PEEP</td>
<td></td>
</tr>
<tr>
<td>• Decrease applied PEEP until $P_{\text{PLAT}} = \text{pre-TGI } P_{\text{PLAT}}$</td>
<td></td>
</tr>
<tr>
<td>• Total PEEP = pre-TGI set PEEP</td>
<td></td>
</tr>
<tr>
<td>PCV with Direct TGI</td>
<td></td>
</tr>
<tr>
<td>• V_t decreased by TGI-induced PEEP</td>
<td></td>
</tr>
<tr>
<td>• Decrease applied PEEP until $V_t = \text{pre-TGI } V_t$</td>
<td></td>
</tr>
<tr>
<td>• Total PEEP = pre-TGI set PEEP</td>
<td></td>
</tr>
<tr>
<td>VCV with Reverse TGI or TGE</td>
<td></td>
</tr>
<tr>
<td>• P_{PLAT} increased by TGI flow</td>
<td></td>
</tr>
<tr>
<td>• Increase applied PEEP until $P_{\text{PLAT}} = \text{pre-TGI } P_{\text{PLAT}}$</td>
<td></td>
</tr>
<tr>
<td>• Total PEEP = pre-TGI set PEEP</td>
<td></td>
</tr>
<tr>
<td>PCV with Reverse TGI or TGE</td>
<td></td>
</tr>
<tr>
<td>• V_t increased by TGI flow</td>
<td></td>
</tr>
<tr>
<td>• Increase applied PEEP until $V_t = \text{pre-TGI } V_t$</td>
<td></td>
</tr>
<tr>
<td>• Total PEEP = pre-TGI set PEEP</td>
<td></td>
</tr>
</tbody>
</table>

VCV = volume controlled ventilation
TGI = tracheal gas insufflation
P_{PLAT} = end-inspiratory plateau pressure
PEEP = positive end expiratory pressure
VCV = pressure controlled ventilation
V_t = tidal volume
TGI = tracheal gas insufflation

Fig. 5. Flow (top graph) and inductive plethysmographic lung volume tracing (bottom graph) in a mechanically ventilated patient (pressure-support ventilation of 4 cm H$_2$O) during expiratory tracheal gas insufflation (e-TGI) of 8 L/min. Flow was measured at the Y-adapter (proximal to the catheter orifice), so baseline e-TGI flow was at ~8 L/min (dotted line). In this example there are 5 ventilator-delivered pressure-support ventilation breaths; however, there are a total of 11 breaths as measured by the inductive plethysmograph. During these 6 additional breaths, TGI flow met the patient’s inspiratory flow demand and provided the total inspiratory volume for the breath and the ventilator was not triggered. (From Reference 22, with permission.)
TGI catheter tip and immediately stop the TGI flow if pressure reaches a threshold.

Monitoring

As is obvious from the previous discussions, careful monitoring of tracheal or TGI catheter pressure is essential. In addition, the ability to measure the P_{plat}, total PEEP, and actual patient V_f and minute ventilation is needed. As a result, the TGI system must either incorporate the ability to perform these measurements or interact with the mechanical ventilator in such a manner as to ensure that these measurements can be made. As is discussed in other papers in this issue of Respiratory Care, TGI can have a dramatic effect on CO₂ levels, but it can potentially have an equally dramatic negative effect on patients if not properly monitored and controlled.

The Ideal Tracheal Gas Insufflation System

At this stage in the development of TGI it may be premature to describe the ideal TGI system. However, there are clearly a number of features that this system must possess. First, it should be intimately coordinated with the mechanical ventilator. This can be accomplished by a system that talks to the ventilator or is an actual part of the ventilator. Tracheal pressure or catheter pressure monitoring with automatic TGI flow shut-off is essential. The ability to monitor both dynamic and static airway pressures and delivered volume must be present. The TGI system must be integrated into the mechanical ventilator’s breath-triggering system to ensure synchrony if used during spontaneous breathing. My bias is that TGI systems should only deliver e-TGI and that r-TGI results in fewer problems than d-TGI. Finally, although it is doubtful that the first commercially developed systems will have the TGI catheter as part of the artificial airway, that would be desirable. The development of artificial airways with large-bore TGI channels reduces the likelihood of airway trauma and reduces the difficulty of humidifying the TGI gas flow.

REFERENCES

Catheters for Tracheal Gas Insufflation

Alexander B Adams MPH RRT FAARC

Introduction
Technical Considerations
Catheters and Tubes
 Transtracheal Oxygenation
 Miscellaneous Catheters
 Specialized Catheters
 The LaBrune-Boussignac Tube
 Reverse-Thrust Catheter
 Reverse-Flow-Design Tube
 A Bidirectional Catheter

Summary

As an adjunct to mechanical ventilation, tracheal gas insufflation (TGI) injects gas flow into the trachea to flush carbon dioxide (CO₂) from the anatomical and mechanical dead space, but the addition of TGI flow from a catheter may cause problems related to increased flow velocity at the catheter tip. Forward momentum and turbulence beyond the tip oppose expiratory flow and may cause or increase intrinsic positive end-expiratory pressure. If the catheter is placed within the endotracheal tube (ETT), the catheter itself acts as a resistive element to exhalation. Effects of the catheter presence (contact on or whipping against the airway) or local rapid gas flow effects on the tracheal mucosa are possible. Thus far, TGI has been delivered through a range of catheter sizes and styles. Two general design modifications have been incorporated in TGI systems to address the possible problems: embedding the catheter flow channel within the ETT, and directing the TGI flow cephalad. The LaBrune-Boussignac tube was designed with 6 or 8 channels embedded within the ETT, from which TGI flow exits laterally within the ETT at 1.5 cm from its tip. This avoids the use of a catheter and thus avoids local traumatic effects. A reverse-thrust catheter has been designed to direct flow within a sheath around the catheter tip; flow exits cephalad from a gap between the sheath and the catheter shaft. As part of a proposed ventilatory mode (intratracheal pulmonary ventilation) the reverse-thrust catheter delivers the tidal breath and, additionally, flushes CO₂ and accelerates secretion removal during exhalation. A reverse-flow design ETT has been developed with two channels, one for tidal volume delivery and the other for TGI flow. The TGI channel is relatively large and flow is directed cephalad by a nozzle at the catheter tip. A recently developed bidirectional catheter allows the option of delivering TGI flow cephalad, towards the lungs or in both directions. Unfortunately, to be convenient, the use of specially designed catheters or ETTs requires the anticipation of TGI use. A complete system for the safe and convenient use of TGI in ventilated patients is not as yet available, but concerns about the safety and convenience of TGI delivery have been addressed with recent advances in catheter/tube design.

Key words: tracheal gas insufflation, catheters, transtracheal oxygen, reverse-thrust catheter, reverse-flow catheter, bidirectional catheter. [Respir Care 2001;46(2):177–184]
Introduction

The placement of a catheter in the trachea to deliver gas flow was first reported in the late 1960s by Stresemann.1 The purpose for tracheal gas insufflation (TGI), that is, washout of the anatomical dead space, was clearly described by Stresemann,1 and, subsequently, Stresemann tested TGI in an animal study and in two ventilated patients.2,3 In the reported patient cases, size #16 gauge catheters were positioned in the tracheas of the ventilated patients, and TGI was shown to successfully flush more than the anatomical dead space. Using TGI for carbon dioxide (CO\textsubscript{2}) elimination was not reported again until Bergolsky and Hurewitz delivered TGI to spontaneously breathing patients 20 years later.4,5 These investigators applied “airway insufflation” through transtracheal oxygenation catheters (SCOOP, Transtracheal Systems, Denver, Colorado) to spontaneously breathing, hypercapnic patients. Further progress in TGI catheter development has occurred within the past 10 years, although a method of conveying TGI flow to the tracheal region has not, as yet, been standardized. Several issues remain concerning the safety and convenience of delivering TGI flow. The development of catheters or tube designs for TGI has attempted to address several concerns about safety and convenience, as well as to determine TGI’s effectiveness. Recent development has been rapid: several innovative catheters and tubes have been designed and tested in bench settings. Less experience has been reported, thus far, from the clinical setting. Without directly discussing the effectiveness of CO\textsubscript{2} elimination by TGI with various catheters, the physical characteristics and general purposes of the TGI catheters/tubes are described herein.

Technical Considerations

There have now been several decades of experience with ventilator circuitry. Though the dynamics of air flow throughout the airways continues to be crudely understood, the air flow dynamics of the ventilator circuitry are more easily studied and better understood. With the integrated use of a relatively fixed structure such as an endotracheal tube (ETT) or a TGI catheter, some basic concepts can be assumed to apply to TGI. The important concepts of TGI delivery are associated with driving gas flow into a narrow TGI flow channel(s). As the gas flow channel narrows into the TGI catheter, velocity increases in direct proportion to the reduction in channel area (Fig. 1). At the same time, to drive gas flow through the catheter, back pressure will develop in the tubing or chambers (such as humidifiers) prior to the narrowed lumen (Fig. 2). Even more importantly, when the gas exits the TGI channel with increased velocity, the forward flow momentum is directed toward the lungs. Also, beyond this exit point the gas emitting from the catheter tip causes markedly increased turbulence. Then, during the patient’s expiratory phase, the forward momentum of lung-directed TGI flow and the increased turbulence tend to oppose expiratory flow. This opposing flow can cause intrinsic positive end-expiratory pressure (auto-PEEP) or increased end-expiratory volume. Another factor is the additional flow from the TGI catheter introduced into the airway during exhalation. This additional flow can increase the role of the ETT and exhalation valve of the ventilator as resistive elements. Also, the physical presence of a catheter in the airway may become a factor during exhalation. The presence of a TGI catheter decreases the lumen area within the ETT and may act as a resistive element that impedes expiratory flow. This effect could be important with a larger-diameter TGI catheter and an ETT with a smaller internal diameter. Though a smaller TGI catheter could reduce this effect, a smaller TGI catheter tends to whip at higher flow rates. With a smaller catheter, air stream velocity is even higher, and the gas stream may become directed at the airway mucosa. Also, unless the increased flow is heated and humidified, a drier, cooler TGI gas may be directed at the airway mucosa. These local effects due to turbulence of the TGI stream or the catheter (whip, stream effect, cooling, drying) can be called local jet effects. Finally, depending on the phasing of TGI flow and pressure sensing devices in the ventilator or circuitry, lung pressure generation beyond the TGI catheter tip is possible if the ETT narrows or occludes. Therefore, concerns about catheters delivering TGI flow in the trachea have included:

- 1. Upstream pressure buildup in the humidifier and the external TGI circuitry.
- 2. Post-catheter effects on exhalation caused by turbulence and momentum transfer.
- 3. Additional resistance of the ETT and exhalation valve with the addition of TGI flow.
- 4. Catheter presence serving as a resistive element during exhalation.
- 5. Local jet effects on the airway due to:
 a. Catheter whip
 b. High-velocity air stream

![Diagram of TGI flow dynamics](image.png)

Velocities $\text{Velocity} = \frac{X}{Y}$

$\text{Area} = \frac{X}{Y}$

Fig. 1. The effect of driving a fixed gas flow through a narrowed lumen. 1. Back pressure generates prior to the narrow lumen. 2. Flow velocity increases. 3. Turbulence occurs at the lumen exit port. 4. Forward momentum results from the high gas velocity at the exit port.
c. Cooling and drying of the airway
6. Pressure generation in the lungs with TGI flow occluded or impeded exhalation.

Several innovative catheters and tubes have been developed to address these possible problems. There have been two major design solutions to these potential problems:
1. The catheter itself can be removed from the ventilator circuit by delivering TGI via a channel(s) in a specialized ETT.
2. The use of a catheter designed to direct flow away from the lungs (cephalad).

In both solutions, the need for the TGI tube or catheter must be anticipated—the specialized tube should be used for intubation or the catheter must be obtained. Therefore, these two possible solutions may be effective at reducing undesired effects of TGI, but their use may not be convenient.

Catheters and Tubes

Transtracheal Oxygenation

In spontaneously breathing patients, extensive experience has been gained in the use of catheters emitting flow into the tracheal region. Transtracheal oxygen (TTO) catheters have been used for oxygen supplementation flow since the 1980s. TTO is a sophisticated form of oxygen therapy, with a different purpose than TGI, yet the introduction of gas flow via a catheter is not, functionally, very different between the two techniques (they are both TGI). The experience with TTO provides evidence that a catheter positioned in the trachea can be safely maintained over extended periods without serious complications. 5 9

The most common complications reported with TTO have been small mucus balls in proportion to the catheter size in use, the catheter clogging or becoming dislodged, and increased phlegm production. Though the stoma and catheter must receive meticulous care with the use of TTO, the experience from TTO suggests that TGI may not have important complications from local jet effects (or other effects?) on the airways and lungs.

Miscellaneous Catheters

The initiation of TGI in the clinical setting can be dangerously simple. Technically, the only extra equipment required for adding TGI to the ventilator circuit would be a flowmeter, oxygen tubing, a bronchoscope adapter, a catheter-oxygen tubing connector, and the catheter (Fig. 3). The flowmeter with oxygen tubing is attached to the connector and catheter, a bronchoscopy adapter is inserted at the end of the ETT, and the TGI catheter can then be positioned. As an adjunct to mechanical ventilation, only prone positioning is simpler and less expensive. But with the indiscriminate use of a simple TGI circuit, all catheter-related problems can occur. Many catheter sizes and types have been used for TGI (Table 1). Recommendations for
Table 1. Sizing of Channels for Tracheal Gas Insufflation

<table>
<thead>
<tr>
<th>Study</th>
<th>Internal Diameter (mm)</th>
<th>Catheter Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isabey<sup>10</sup></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Heimlich and Carr<sup>6</sup></td>
<td>1.7</td>
<td>5 French</td>
</tr>
<tr>
<td>Miro et al<sup>11</sup></td>
<td>1.7</td>
<td>16 gauge</td>
</tr>
<tr>
<td>Imanaka et al<sup>12</sup></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Nakos et al<sup>13</sup></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Bergofsky and Hurewitz<sup>4</sup></td>
<td>2.1</td>
<td>14 gauge</td>
</tr>
<tr>
<td>Hurewitz et al<sup>3</sup></td>
<td></td>
<td>7 French</td>
</tr>
<tr>
<td>Ravenscraft et al<sup>14</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolobow et al (reverse thrust catheter)<sup>15</sup></td>
<td>2.64</td>
<td></td>
</tr>
<tr>
<td>Christopher et al<sup>7</sup></td>
<td></td>
<td>8 French</td>
</tr>
<tr>
<td>Kirmse et al (reverse flow design)<sup>16</sup></td>
<td>3.54</td>
<td></td>
</tr>
</tbody>
</table>

the selection of TGI catheter size and type have not been published. Clinical studies of TGI have used this simple TGI catheter circuit, but these studies have included additional monitoring and the attention of data collection.^{13,14,17}

Specialized Catheters

Several specialized catheters have been used to study specific questions about TGI or to study more general issues of ventilation. For example, Slutsky and Menon conducted an animal study of constant-flow (apnea) ventilation using a specialized double-lumen catheter.¹⁸ The catheter was placed alongside, not through, the ETT (Fig. 4). With the two catheters placed outside of the ETT, they did not act as resistive elements, and the ETT served as a conduit for exhalation only. The catheters were positioned sequentially at several distances beyond the carina while continuous gas flow was delivered at high flows without inspiratory/expiratory cycling (apnea ventilation). That study reported adequate blood gases with high constant-flow ventilation via airway-delivered gas flow.

In two other animal studies, TGI was delivered via a well-secured, carefully positioned small-lumen metal tube.^{19,20} The metal catheter provided a fixed directional- ity for TGI flow, eliminating the possibility of catheter whip or malpositioning.

Another study delivered TGI through an ETT designed for high-frequency ventilation (Mallinckrodt Hi-Lo jet tube),²¹ which has two channels tunneled within the ETT, one for jet ventilation and one for pressure monitoring. The pressure monitoring channel was used for TGI delivery to allow convenient application of phasic-expiratory TGI and avoid the use of a catheter.

In a recent study, Blanch et al reported the use of a Univent (Phycon) catheter in a unilateral lung injury model.²² This catheter was required to aim the therapy (TGI) at the region of injury—the injured lung. Injury-directed TGI was remarkably effective at CO₂ elimination. In each of the cited studies, specialized catheters were used, primarily, for research purposes. These catheters/tubes were not being studied or tested for possible clinical use.

Fig. 4. Schematic of a double-lumen tracheal gas insufflation (TGI) catheter system used in a study of constant-flow (apnea) ventilation. The two catheters are alongside and in back of the endotracheal tube (ETT). Constant gas flow is delivered by the catheters, with gas exiting the lungs via the ETT. The study protocol involved the positioning of catheters at various distances into the airways beyond the ETT. CFV = constant flow ventilation, PEEP = positive end-expiratory pressure. (From Reference 18, with permission.)
Catheters for Tracheal Gas Insufflation

A specialized ETT, the LaBrune-Boussignac tube, has been developed in France, with an original purpose of providing a means to bypass ETT resistance. It was also considered as an option for delivering constant-flow ventilation (Fig. 5). This tube has now been studied as a TGI device. The tube has either 6 or 8 channels molded along the length of its inner shaft. Gas entry into the ETT is via a manifold at the top of the tube, and the channels direct TGI flow to a lateral entry within the ETT at 1.5 cm from the tip. One of the ports is reserved for tracheal pressure monitoring, and another is available for the option of instilling surfactant. This tube was studied in premature newborns as a TGI device during mechanical ventilation, and its use allowed a less aggressive conventional ventilation strategy. There are several possible benefits to the use of the LaBrune-Boussignac tube. The use of multiple channels distributes gas flow and reduces the velocity of TGI gas. With exit ports inside the tube, local jet effects are reduced and not directed upon the airway. Embedding the TGI channels into the ETT avoids, of course, the need for a TGI catheter.

Fig. 5. The LaBrune-Boussignac endotracheal tube (ETT). A: Schematic of the entire tube, with a mid-tube cross-section. B: Photograph of the tube. C: Photograph of the tube tip. (From Reference 10, with permission.)

The LaBrune-Boussignac Tube
Reverse-Thrust Catheter

A specially designed TGI catheter has been developed as part of a ventilation method: intratracheal pulmonary ventilation.15,25 This catheter has an occluded tip, with catheter flow exiting via side ports. The TGI flow is further directed cephalad along an annular gap (Fig. 6). This is called a reverse-thrust catheter (RTC) because it directs TGI flow away from the lungs. With an RTC, the local jet effects from TGI flow are within the ETT, and TGI flow is aimed away from the lungs, in the direction of (not opposing) expiratory flow. The RTC design may then have another possible advantage: a higher-velocity TGI flow will not impede expiration if a Venturi effect by the RTC flow entrains rather than impedes flow from the expiratory flow stream. In intratracheal pulmonary ventilation, the RTC also delivers the tidal volume. With the RTC flow running continuously, inspiration occurs when the exhalation valve of the ventilator closes and tidal volume is delivered to the lungs via the RTC. When the exhalation valve opens (during exhalation) the ETT serves (as its primary role) as the conduit for exhalation. As experience with the device has accumulated, an observation has led to another possible beneficial use of the RTC. The RTC accelerates secretion removal from the ETT and airways, so RTC assists with airway clearance (Fig. 7).26 RTC use may therefore avoid or reduce the need for intermittent endotracheal suctioning.

Reverse-Flow-Design Tube

A double-lumen ETT using a reverse-flow design (RFD) tube (Fig. 8) has been devised for use with TGI.16,27,28 The larger of the two lumens delivers the tidal breath to the patient. A smaller lumen delivers the TGI flow. At the end of the TGI lumen a nozzle redirects the TGI flow cephalad (as with the RTC). Again, incorporating the TGI flow within the ETT and directing TGI flow cephalad has some advantages. Of course, with the RFD ETT (as with the LaBrune-Boussignac tube), a catheter is not required. Local jet effects are contained within the ETT. And, as with the RTC, air entrainment above the nozzle by the TGI flow can assist rather than impede expiratory flow.

The advantages of the LaBrune-Boussignac, RFD, and RTC tubes/catheter can be considered improvements in the delivery of TGI. Unfortunately, with use of the LaBrune-Boussignac or RFD tubes, the use of TGI should be anticipated prior to intubation. Otherwise, starting TGI requires extubation and immediate reintubation with a TGI ETT, a possibly unsafe procedure in a critically ill patient. For the RTC to be used, the catheter must be obtained. Furthermore, its use has been primarily but not exclusively reported with intratracheal pulmonary ventilation, a mode unfamiliar to most clinicians. Therefore, without the ability to anticipate the need for TGI, the application of TGI may continue to be either unsafe or inconvenient.
Fig. 8. The reverse-flow design endotracheal tube. A single relatively large channel is embedded in the endotracheal tube. A nozzle at the tip of the tube directs the tracheal gas insufflation flow cephalad. (From Reference 28, with permission.)

TGI Delivery Mode

Continuous \[\rightarrow 10 \text{ L/min}\]

Expiratory \[\rightarrow 10 \text{ L/min}\]

Reverse \[\leftarrow 5 \text{ L/min}\]

Bi-directional \[\leftarrow 5 \text{ L/min}\]

Fig. 9. Schematic of a bidirectional tracheal gas insufflation (TGI) catheter. TGI flow direction can be chosen with this catheter, either toward the lungs (distal), toward the mouth (proximal), or in both directions. Expiratory or continuous TGI can be delivered. (Figure courtesy of Edgar Delgado.)

A Bidirectional Catheter

A catheter with an H-shaped tip was recently introduced that also addresses the issue of TGI-induced auto-PEEP generation (Fig. 9). This catheter allows control of the direction of TGI flow. Flow can be directed toward the lungs, in a reverse flow (cephalad), or in both directions at once. Though the lung-directed flow may induce auto-PEEP, the flow may have the benefit of CO2-clearing effects beyond the catheter. The reverse-flow option has been shown to reduce auto-PEEP in a test lung study.

Summary

A number of catheter/tube models have been designed to address the concerns of adding TGI flow to the trachea of a ventilated patient. While the role and effectiveness of TGI as an adjunct to mechanical ventilation becomes clearer, to gain wider acceptance a TGI catheter or catheter system must also be shown to be safe and relatively con-
REFERENCES
Monitoring and Humidification during Tracheal Gas Insufflation

Edgar Delgado RRT, Leslie A Hoffman RN PhD, Frederick J Tasota RN MSN, and Michael R Pinsky MD

Introduction

Monitoring

Tidal Volume
Peak Inspiratory Pressure
Intrinsic Positive End-Expiratory Pressure
Carbon Dioxide Elimination Efficiency
Humidification
Summary

In order to use tracheal gas insufflation (TGI) in a safe and effective manner, it is important to understand potential interactions between TGI and the mechanical ventilator that may impact upon gas delivery and carbon dioxide (CO₂) elimination. Furthermore, potentially serious complications secondary to insufflation of cool, dry gas directly into the airway and the possibility of tube occlusion must be considered during use of this adjunct modality to mechanical ventilation. Regardless of the delivery modality (continuous TGI, expiratory TGI, reverse TGI, or bidirectional TGI), conventional respiratory monitoring is required. However, TGI with mechanical ventilation can alter tidal volume and peak inspiratory pressure and can lead to the development of intrinsic positive end-expiratory pressure. Therefore, depending on the gas delivery technique used, it is important to carefully monitor these ventilatory parameters for TGI-induced changes and understand the potential need for adjustments to ventilator settings to facilitate therapy and avoid problems. Optimally, gas insufflated by the TGI catheter should be conditioned by addition of heat and humidity to prevent mucus plug formation and potential damage to the tracheal mucosa. Finally, patients must be closely monitored for increases in peak inspiratory pressure from obstruction of the tracheal tube and should have the TGI catheter removed and inspected every 8–12 hours to assess for plugs.

Key words: tracheal gas insufflation, monitoring, humidification, mucus plug. [Respir Care 2001;46(2):185-192]

Introduction

The process of insufflating fresh gas directly into the trachea to augment gas exchange has been utilized for more than 15 years, in spontaneously breathing patients, as transtracheal oxygen delivery. More recently this adjunctive technique has been used in conjunction with volume-controlled or pressure-controlled ventilation and is

Edgar Delgado RRT is affiliated with the Department of Respiratory Care, Leslie A Hoffman RN PhD and Frederick J Tasota RN MSN are affiliated with the Department of Acute/Tertiary Care and the School of Nursing, and Michael R Pinsky MD is affiliated with the Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.

A version of this report was given by Mr Delgado at the special conference. Tracheal Gas Insufflation: Current Status and Future Prospects, presented by the American Respiratory Care Foundation, August 19, 2000, in Dallas, Texas.

Correspondence: Edgar Delgado RRT, Respiratory Care Department, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh PA 15213. E-mail: delgadoe@msx.upmc.edu.

Respiratory Care • February 2001 Vol. 46 No. 2
referred to as tracheal gas insufflation (TGI). The major effect of TGI is to enhance gas exchange efficiency by removal of carbon dioxide (CO₂) from the anatomic dead space. When used in conjunction with mechanical ventilation, TGI may alter other parameters that affect CO₂ elimination, such as tidal volume (V₉) and peak inspiratory pressure (PIP), and can lead to the development of intrinsic positive end-expiratory pressure (auto-PEEP). A thorough understanding of interactions between TGI and these ventilatory parameters is critical to utilizing TGI in a safe, effective, and efficient manner. It is equally important to understand how to monitor for adverse effects that may result from these interactions. To avoid potential complications caused by insufflation of cool, dry gas directly into the airway, humidification must also be considered when applying TGI clinically. This article reviews issues related to monitoring and humidification when using TGI and suggests possible methods to minimize and/or prevent adverse effects when using this adjunctive therapy.

Monitoring

The statement “appearances can be deceiving” is very applicable to the subject of monitoring during use of TGI. Based on early descriptions, TGI appeared to be a relatively simple therapy. However, complexities involved in its use became evident as utilization of this therapy increased. Authors have described a variety of interactions between TGI and mechanical ventilation that influence V₉, minute ventilation (Vₑ), airway pressure, and/or total PEEP (ventilator set PEEP + auto-PEEP). These interactions necessitate specific adjustments and patient/ventilator monitoring (Table 1).

Tidal Volume

Numerous studies have shown that continuous TGI (c-TGI) causes a decrease in inspired Vₑ when used in conjunction with mechanical ventilation. This phenomenon is addressed in various ways, depending on the ventilatory mode and TGI delivery method.

During volume-controlled ventilation, the total Vₑ delivered is equivalent to the ventilator set Vₑ plus the Vₑ generated by the TGI catheter. That is: Vₑtotal = Vₑvent + Vₑcath.

The additional volume delivered by the catheter can be determined by calculating the amount of TGI-generated Vₑ and subtracting this value from the ventilator-set Vₑ. With this adjustment a consistent Vₑ is delivered to the patient prior to and following initiation of TGI. For example, consider a patient on assist-control ventilation with a set Vₑ of 700 mL, respiratory rate of 15 breaths per minute, and inspiratory time (Tᵢ) of 1.5 seconds. If TGI is initiated at 6 L/min, the Vₑ derived from TGI is calculated as follows:

$$V_{ₑTGI} = \frac{V_{ₑTGI} \times 1 \text{ min}}{60 \text{ s}} \times 1,000 \text{ mL/L} = 150 \text{ mL}$$

where VₑTGI = TGI flow in L/min, Tᵢ = inspiratory time in seconds, the calculation 1 min/60 s converts from seconds to minutes, and the calculation 1,000 mL/L converts from liters to milliliters.

The TGI-derived Vₑ (150 mL) is then subtracted from the ventilator set Vₑ to obtain the adjusted ventilator Vₑ setting. Thus, in this example:

$$550 \text{ mL (adjusted } Vₑ) = 700 \text{ mL (set } Vₑ) - 150 \text{ mL (VₑTGI)}$$

This Vₑ adjustment prevents an increase in the total delivered Vₑ during TGI.

During pressure-controlled ventilation (PCV) and c-TGI, the ventilator and catheter function together to deliver gas over the preset Vₑ. As the catheter delivers gas, ventilator flow decreases because the catheter’s added gas contributes to the set inspiratory pressure. Under certain conditions (eg, c-TGI flows ≥ 10 L/min, long Tᵢ, low resistance), set inspiratory pressure may be reached before the end of inspiration. Accordingly, flow from the ventilator ceases and the expiratory valve remains closed until the end of inspiration. However, the catheter continues to deliver gas into the lung, resulting in an increase in delivered Vₑ. This problem can be easily corrected by inserting a pressure relief valve (Bird, #04230, Bird Products, Palm Springs, California) into the ventilator circuit, allowing TGI flow (excess volume) to be vented into the atmosphere (Fig. 1). If set inspiratory pressure is changed, adjustments must be made to the pressure relief valve. Delgado et al recently tested a prototype flow relief valve (Respirronics, Murrysville, Pennsylvania) that removes gas from the circuit at a set flow (eg, 10 L/min) (Fig. 2). Use of this valve may simplify monitoring during TGI administration because it eliminates the need to use a pressure relief valve and make adjustments to the pressure relief valve if set inspiratory pressure is changed.

Use of expiratory TGI (e-TGI) during volume-control ventilation prevents the delivery of additional inspired Vₑ because gas flow is only activated during expiration. However, during PCV, the volume of gas delivered to the airway depends on the pressure gradient between peak intrapulmonary pressure and end-expiratory lung pressure. If this pressure gradient decreases because of the development of auto-PEEP, the Vₑ delivered to the patient will
Table 1 Monitoring and Ventilator Adjustments during Tracheal Gas Insufflation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ventilatory Mode</th>
<th>TGI Delivery Mode</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal volume</td>
<td>VCV</td>
<td>Continuous</td>
<td>Reduce inspired (V_I) to compensate for TGI flow during inspiration (see text for calculation) or insert a flow-relief valve</td>
</tr>
<tr>
<td></td>
<td>Expiratory</td>
<td>No modification required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>Reduce inspired (V_I) to compensate for TGI flow during inspiration (see text for calculation) or insert a flow-relief valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bidirectional</td>
<td>No modification required if flow-relief valve is used</td>
<td></td>
</tr>
<tr>
<td>Airway Pressure</td>
<td>PCV</td>
<td>Continuous</td>
<td>Insert pressure or flow-relief valve</td>
</tr>
<tr>
<td></td>
<td>Expiratory</td>
<td>May need to increase set inspiratory pressure to maintain (V_I)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>May need to increase set inspiratory pressure to maintain (V_I)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bidirectional</td>
<td>No modification required if flow-relief valve is used</td>
<td></td>
</tr>
<tr>
<td>Auto-PEEP</td>
<td>VCV</td>
<td>Continuous</td>
<td>Reduce ventilator PEEP if PIP increases. Clinically, a 5 cm H(_2)O reduction in set PEEP is typically required @ TGI flows of 10 L/mm</td>
</tr>
<tr>
<td></td>
<td>Expiratory</td>
<td>Same as with continuous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>An increase in ventilator PEEP may be necessary if PEEP is generated or total PEEP is decreased</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bidirectional</td>
<td>No adjustment necessary</td>
<td></td>
</tr>
<tr>
<td>Auto-PEEP</td>
<td>PCV</td>
<td>Continuous</td>
<td>Same as with VCV</td>
</tr>
<tr>
<td></td>
<td>Expiratory</td>
<td>Same as with VCV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>Same as with VCV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bidirectional</td>
<td>No adjustment necessary</td>
<td></td>
</tr>
</tbody>
</table>

TGI = tracheal gas insufflation; VCV = volume-control ventilation; \(V_I \) = tidal volume; PCV = pressure-control ventilation; auto-PEEP = intrinsic positive end-expiratory pressure; PIP = peak inspiratory pressure; PEEP = negative end-expiratory pressure.

decrease\(^{22,24}\) To maintain a constant \(V_I \) it is therefore necessary to increase set inspiratory pressure by an amount equivalent to the amount of auto-PEEP generated, or decrease set PEEP by the amount of auto-PEEP generated.

With reverse TGI (r-TGI), other monitoring issues may arise. Several studies have examined interactions between volume and pressure when using r-TGI alone and in combination with e-TGI.\(^ {14,16,18}\) In those studies, r-TGI produced equivalent PEEP, compared with conventional ventilation at low flows, but negative end-expiratory pressure was generated when \(V_I \) was increased (double or tripled) for 10–20 seconds.\(^ {16}\) Decreases in total-PEEP were also generated when r-TGI was delivered only during expiration at 10 L/min, subsequently reducing lung volume.\(^ {14}\) These observations are important when monitoring patients receiving TGI, because the \(V_I \) delivered during PCV depends on the pressure gradient between peak intrapulmonary pressure and end-expiratory lung pressure.

Peak Inspiratory Pressure

Typically, PIP and \(V_I \) exhibit a direct relationship when compliance and resistance are unchanged. As \(V_I \) is increased, PIP increases. Conversely, as \(V_I \) is decreased, PIP decreases. Therefore, the changes in PIP that occur when using a ventilator mode in conjunction with a specific TGI delivery method will be directly related to those observed in \(V_I \).

Intrinsic Positive End-Expiratory Pressure

Though there is controversy regarding the impact of different TGI delivery methods on increases in total PEEP, there is consensus that TGI often creates auto-PEEP.\(^ {7,9,10,12,14,20,24}\) Miro et al\(^ {20}\) proposed a theoretical framework to depict the interactions between TGI and ventilator mode, \(V_I \), and PIP that result in the development of auto-PEEP (Fig. 3). During volume-controlled ventilation, when ventilator PEEP is left constant, \(V_I \) remains constant, but there is an increase in end-expiratory pressure and, therefore, peak airway pressure because of TGI-induced auto-PEEP. During PCV, when ventilator PEEP and peak airway pressure are kept the same as baseline, \(V_I \) excursions (and hence \(V_T \)) are reduced because of TGI-induced auto-PEEP. When ventilator PEEP is reduced by an amount equivalent to TGI-induced auto-PEEP, \(V_I \), peak airway pressure, and total PEEP remain the same as baseline during PCV. This conceptual framework demonstrates the impact of TGI on these ventilatory parameters, and the importance of monitoring for the development of auto-PEEP during TGI administration.

Several mechanisms may contribute to an increase in auto-PEEP when using TGI. The TGI catheter decreases
A third factor to be considered is catheter configuration. Stagnation pressure (back pressure) can develop as forward flow from a straight-tip TGI catheter meets the opposing gas flow exiting the lung. Early studies postulated that the increase in back pressure (and, thus, auto-PEEP) was greater during e-TGI than during e-TGI because e-TGI delivers gas throughout the respiratory cycle. However, we have found that when \(V_t \) is maintained constant, c-TGI and e-TGI produce equivalent levels of total PEEP when delivered with a straight-tip catheter.

Alternatively, TGI can be delivered with a reverse tip (reverse thrust) catheter or a catheter that delivers bidirectional flow (bi-TGI). With bi-TGI, gas is delivered into the airway simultaneously in forward and reverse directions. Of approaches evaluated to date, r-TGI and bi-TGI appear to be the most effective in preventing increased total PEEP during TGI administration. Delgado et al postulate that simultaneous insufflation of gas in opposite directions might reduce or eliminate the back pressure that produces auto-PEEP. Four catheter configurations were studied in an artificial lung model during PCV under constant minute ventilation conditions (Fig. 4). During bi-TGI and r-TGI, levels of total PEEP were lower during PCV than during e-TGI and c-TGI, at each of the 3 inspiratory-expiratory ratios studied (1:1, 1:2, 2:1). CO₂ elimination efficiency was comparable. If supported in animal and human studies, these findings suggest an important advantage of r-TGI and bi-TGI over c-TGI and e-TGI delivered in a forward flow direction.

Monitoring auto-PEEP can be quite challenging. The end-expiratory occlusion method cannot be used during any TGI technique that continues to deliver gas into the lungs, because a static end-expiratory pressure cannot be achieved. The use of respiratory inductive plethysmography also presents difficulties because substantial baseline drift occurs over time. In addition, respiratory inductive plethysmography is not widely available. We have found that a 5 cm H₂O reduction in extrinsic (ventilator set) PEEP is typically required to keep total PEEP constant during c-TGI at 10 L/min.

Carbon Dioxide Elimination Efficiency

The efficiency of TGI is best measured by monitoring arterial carbon dioxide tension (\(P_{a\text{CO}_2} \)). However, this measurement is invasive and episodic and there are few data to provide guidelines about optimal times to measure \(P_{a\text{CO}_2} \), following initiation of TGI. Hoffman et al reported no difference in \(P_{a\text{CO}_2} \), measured at 30 minutes and 60 minutes after initiation of TGI in 8 acute respiratory distress syndrome patients. They therefore concluded that effectiveness of TGI was evident within 30 minutes, suggesting that the efficacy of this intervention could be rapidly determined.

Fig. 1. Effects of catheter flow rate with (circles) and without (triangles) the pressure relief valve on (A) peak airway pressure \(P_{\text{aw}} \) and (B) total inspiratory tidal volume \(V_t \). Independent variables were constant at airway resistance = 20 cm H₂O/L/s, lung compliance = 0.01 L/cm H₂O, ventilator frequency = 10 breaths/min, and ratio of inspiratory time to total breathing-cycle time = 0.33. The horizontal dotted line at 35 cm H₂O represents the set inspiratory pressure \(P_{\text{set}} \). (From Reference 23, with permission.)
Monitoring and Humidification during Tracheal Gas Insufflation

Fig. 2. Insertion of a prototype flow relief valve into the ventilator circuit maintains consistent venting of 10 L/min gas flow and provides consistent delivered volume during continuous tracheal gas insufflation under varying inspiratory pressures.

Fig. 3. Theoretical framework that illustrates interactions between tracheal gas insufflation (TGI), ventilator mode, minute ventilation (tidal volume), and intrinsic positive end-expiratory pressure (auto-PEEP). During volume-controlled ventilation, when ventilator PEEP (height of clear areas labeled PEEP_{vent}) is kept constant, tidal volume (height of black bars) remains constant, but there is an increase in end-expiratory pressure and, therefore, peak airway pressure, because of TGI-induced auto-PEEP (height of cross-hatched areas). During pressure-controlled ventilation, when PEEP_{vent} and peak airway pressure are kept the same as baseline, tidal volume excursions (and, thus, minute ventilation) are reduced because of TGI-induced auto-PEEP. When PEEP_{vent} is reduced by an amount equivalent to TGI-induced auto-PEEP, tidal volume, peak airway pressure, and total PEEP remain the same as baseline during pressure-control ventilation. (Adapted from Reference 20, with permission.)

Two studies evaluated the use of monitoring end-tidal carbon dioxide tension (P_{ETCO₂}, obtained by capnography, as a semiquantitative indicator of TGI efficiency. In 8 patients with acute respiratory failure, Ravenscroft et al¹² found a moderate (r = 0.68) correlation between the percentage reduction in P_{ACO₂} (％ΔP_{ACO₂}) as a function of the percentage reduction in P_{ETCO₂} (％ΔP_{ETCO₂}) from baseline values in 20 adults with acute respiratory distress syndrome. The %ΔP_{ETCO₂} correlated significantly (r = 0.75; p < 0.001) with the %ΔP_{ACO₂} (Fig. 6).⁷ Both authors concluded that, although P_{ETCO₂} is a poor estimate of P_{ACO₂} in patients with respiratory failure, these data may justify use of P_{ETCO₂} as a monitor of trends regarding changes in CO₂ elimination efficiency during TGI.
Monitoring and Humidification during Tracheal Gas Insufflation

TGI Delivery Mode

Continuous

Exspiratory

Reverse

Bi-directional

\[\text{TGI Delivery Mode} \]

Flow

Exp

Insp

\[\text{Fig. 4. Prototype H-shaped-tip catheter configurations and flow patterns with different tracheal gas delivery modes.} \]

Humidification

Humidification during TGI is an important issue that has received little study. The data available are mainly derived from studies investigating long-term use of transtracheal oxygen delivery in spontaneously breathing patients, whereas most TGI studies have been conducted in patients on full ventilatory support.

The respiratory tract performs a role in a variety of functions, including ventilation, gas conditioning, production and inactivation of bioactive substances, filtering.

\[\text{Fig. 5. Percentage reduction of arterial carbon dioxide tension (} \% \Delta \text{PaCO}_2 \text{) from baseline as a function of the reduction in the end-tidal carbon dioxide tension (} P_{\text{ETCO}_2} \text{) from the baseline value (} P_{\text{ETCO}_2\text{BASE}} \text{) in 8 patients suffering acute respiratory failure and receiving tracheal gas insufflation. As the difference between } P_{\text{ETCO}_2} \text{ and } P_{\text{ETCO}_2\text{BASE}} \text{ increased, } \text{PaCO}_2 \text{ decreased. (From Reference 9, with permission.)} \]

\[\text{Fig. 6. Relationship between percent reduction of arterial carbon dioxide tension (} \% \Delta \text{PaCO}_2 \text{) and percent reduction in end-tidal carbon dioxide tension (} \% \Delta P_{\text{ETCO}_2} \text{) from baseline values in 20 patients suffering from acute respiratory distress syndrome and receiving tracheal gas insufflation. (From Reference 12, with permission.)} \]
smell, communication, mucociliary transport, and surfactant production.\(^\text{27,28}\) When a patient is endotracheally intubated, some of these functions are interrupted or bypassed, whereas others (including the integrity of secretions) are affected by the temperature and humidity of the inspired gas. In a preliminary report, Shapiro et al.\(^\text{29}\) found that TGI significantly cooled the central airways and that the conditioned gas delivered by the ventilator cannot compensate for this effect. Further, patients who require mechanical ventilation are more likely than spontaneously breathing patients to be more susceptible to having more secretions and more susceptible to the effects of jets of gas striking the tracheal wall.\(^\text{23}\)

In airway mucosa there are basically 3 heat and moisture paths. The heat and moisture given off during inspiration, the recovered heat and moisture during exhalation, and the heat and moisture obtained from systemic reserves.\(^\text{31}\) Therefore, it is logical to assume that the airways may be exposed to adverse effects if the inspiratory gas delivered by the ventilator and TGI system is not conditioned. Fletcher et al.\(^\text{32}\) reported the development of an endotracheal mass (mucous plug 1.8 \(\times\) 2.5 cm) after 9 days of transtracheal oxygen delivery at 3 L/min. In a report by Burton et al.\(^\text{33}\) a 50-year-old man with chronic obstructive pulmonary disease and pulmonary fibrosis developed severe dyspnea and subsequently expired after approximately 15 days of transtracheal oxygen delivery with a flow of 3 L/min. The autopsy report revealed a mucus plug obstructing the patient’s trachea. Hoffman et al.\(^\text{13}\) studied 40 patients receiving long-term transtracheal oxygen delivery and reported formation of mucus balls on the tip of the catheter in 25% during the time the tract is immature and the catheter is cleaned in place. A retrospective study of 56 patients using transtracheal oxygen catheters from 2 days to more than 6 years found a mucous plug prevalence rate of 38%.\(^\text{34}\)

Most trancheal gas insufflation studies completed on humans and animals have been short-term and either do not report whether the TGI gas was heated and humidified or report that a nonheated, dry gas was used. When a heated and humidified system was used to condition the gas during intratracheal pulmonary ventilation, Kolobow et al.\(^\text{16}\) reported no damage to the tracheal mucosa and no encrustation. Danan et al.\(^\text{15}\) reported using humidified and warmed TGI in 9 premature newborns for up to 31 days (mean 17 d). The tracheas of 3 newborns who died were examined and found normal. No problems due to mucus plug formation were reported in any subjects. In that study, the humidified and warmed (Fisher and Paykel MR600, Auckland, New Zealand) gas was derived from the inspiratory line of a conventional ventilator circuit and forced into the TGI capillaries of an endotracheal tube using a membrane pump (110 cm H\(_2\)O) at a rate of 0.5 L/min. Kuo et al.\(^\text{12}\) reported using humidified, nonheated TGI gas with a straight-tip catheter continuously for up to 72 hours in 12 patients. TGI was discontinued in 2 patients because of intratracheal catheter obstruction, which occurred after 58 and 67 hours, respectively. Both events were detected immediately (by the whistling sounds emitting from the pressure release valve on the humidifiers) and caused no problems. When removed, both catheter tips were obstructed by inspissated mucus plugs. Nine patients completed up to 72 hours of TGI. Eight had no change in the tracheobronchial mucosa, and one had focal mucosal erythema adjacent to the carina on bronchoscopic examination.

To date, there have been no reports of airway occlusion secondary to mucus plugging during TGI. Nevertheless, it is important to monitor for this complication and institute preventive measures. If the expiratory circuit of the ventilator becomes occluded, the TGI catheter could deliver a large volume of gas, potentially resulting in serious barotrauma and hemodynamic compromise.\(^\text{29}\) A reliable mechanism to detect an increase in pressure and stop TGI flow needs to be developed to enable safe long-term provision of TGI.\(^\text{25,26}\) Until such mechanisms are commercially available, using prophylactic measures to avoid problems is important. These include monitoring for increases in PIP due to possible mucus plugging and removal of the TGI catheter every 8–12 hours to assess for plugs. One difference between the gas conditioning techniques described by Kolobow et al.\(^\text{16}\) and Danan et al.\(^\text{15}\) and that described by Kuo et al.\(^\text{12}\) was that the latter study did not heat the inspired gas. This observation suggests that additional attention needs to be given to developing a mechanism to heat and humidify TGI gas delivered in all systems.

Summary

The use of TGI as an adjunct to mechanical ventilation in the intensive care unit environment requires conventional monitoring, regardless of the TGI system used. In addition, monitoring of changes in \(V_T\), PIP, and \(P_{\text{aCO}_2}\) are necessary. Monitoring for the development of auto-PEEP is also indicated. Optimally, gas insufflated by the TGI catheter should also be conditioned by addition of heat and humidity to prevent mucus plug formation and damage to the tracheal mucosa. Finally, patients should be monitored for increases in PIP due to mucus plugging, and the TGI catheter should be removed every 8–12 hours to assess for plugs.

REFERENCES

Intratracheal Catheters As Drug Delivery Systems

Neil R MacIntyre MD FAARC

Introduction

Drugs That Have Benefit If Delivered through the Airways
Aerosol Versus Instillation Techniques for Administering Drugs into the Lungs
Intratracheal Aerosol Delivery
Combining an Intratracheal Aerosol System with Tracheal Gas Insufflation
Summary

Medication delivery into the lungs can be used to provide a high therapeutic index for agents targeted to specific lung diseases. In addition, the lung can be used as a portal of entry for other agents targeted to systemic diseases. Delivery of medications into the lung can be accomplished by either instillation or aerosolization. Instillation approaches are limited by the fluid volume that can be given safely, and instilled liquids distribute according to gravity. In contrast, aerosolization approaches can deliver larger volumes over longer periods and aerosols distribute according to ventilation. In the mechanically ventilated patient, externally generated aerosols have very poor lung delivery because the endotracheal tube functions as a barrier to aerosol passage. Novel aerosol generating systems at the ends of small-diameter catheters that can be placed into the trachea (or beyond) are being developed to address this. In vitro testing has shown these systems to be capable of producing appropriately sized particles, with high rates of lung deposition. These catheters could be coupled with tracheal gas insufflation systems, not only to deliver therapeutic aerosols but also to create water aerosols to supply necessary humidification during tracheal gas insufflation.

Key words: tracheal gas insufflation, catheters, pulmonary drug delivery, aerosols, instillation. [Respir Care 2001;46(2):193–197]

Introduction

Delivery of drugs into the lungs through airways is done for two purposes. First, a high therapeutic index (efficacy/toxicity) can be achieved for a variety of lung conditions when the drug is delivered directly into the lung, as compared to through the systemic circulation. Examples include β agonist bronchodilators and steroids to treat airway inflammation. Second, in recent years there has also been considerable interest in using the lung as a means to access the systemic circulation. The lung is thus used as an entry site rather than a therapeutic target for a drug.

Drugs That Have Benefit If Delivered Through the Airways

At the present time, the United States Food and Drug Administration has approved several classes of drugs for use as aerosols or as instilled drugs to treat lung disease. These include the bronchodilators, corticosteroids, mucolytics, and surfactants. There are also published reports of a large number of other Food and Drug Administration-approved drugs that have been tried as aerosols or instil-
Table 1. Examples of Drugs with Demonstrated Pulmonary Delivery Efficacy

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Insulin</th>
<th>Heparin</th>
<th>Prostacyclin</th>
<th>Alpha-1-antitrypsin</th>
<th>Leukotriene modifiers</th>
<th>Indomethacin</th>
<th>Surfactants</th>
<th>Interferons</th>
<th>Hormones</th>
<th>Colony stimulating factors/erythropoietin</th>
<th>Somatostatin</th>
</tr>
</thead>
</table>

Note: These are examples of drugs approved by the United States Food and Drug Administration for human use but not specifically approved for delivery via aerosol or airway instillation and for which there is evidence of efficacy with pulmonary delivery.

Aerosol Versus Instillation Techniques for Administering Drugs into the Lungs

There are two conceptually different ways of delivering a medication into the lungs. The first is to insert a delivery catheter either through the larynx or through an artificial airway (e.g., endotracheal or tracheostomy tube) and directly deliver a bolus of drug. The second way is to generate an aerosol external to the patient and have either the patient’s spontaneous ventilatory efforts or a positive pressure breath from a ventilator deliver the aerosol into the lung.

Advantages to the instillation technique are that large volumes can be delivered quickly. There is a limit, however, to how much fluid can be delivered over a short period of time (e.g., lung mechanics and gas exchange begin to alter with instillations of as little as 1 mL/kg). Moreover, there is often a transient “bolus” effect on both gas exchange and hemodynamics, especially if the bolus volume is substantial. The distribution of an instilled medication is usually gravity-dependent. Mechanically ventilated patients thus generally have the distribution going into the posterior regions of the lung, whereas an upright patient breathing spontaneously would have an instilled bolus go caudally. Surfactant is the most common instilled drug, and it is a common technique to rotate the patient through various axes to assure optimal distribution. Experimental delivery of permbron also utilizes a similar approach.

The aerosol route offers the opportunity to deliver medications at a more constant rate over a much longer period of time. Aerosolized medications tend to distribute according to ventilation, as opposed to gravity. Other factors affecting delivery of an aerosol include particle size and velocity, because these affect deposition through impaction, sedimentation, and diffusion. In general, the higher the flow rate and the larger the particle size, the more likely the aerosol is to be deposited in the major airways. In contrast, smaller particles moving at a slower velocity tend to penetrate deeper into the lung and deposit in more distal lung regions. Conceptually, drug targeting to specific regions of the lung could be accomplished by manipulating these aerosol characteristics.

Table 2. Examples of Experimental Drugs Administered via Aerosol

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Gene transfer vectors</th>
<th>Antioxidants</th>
<th>Antiproteases</th>
<th>Cytokine modifiers</th>
<th>Arachidonic acid metabolite modifiers</th>
<th>Vaccines</th>
</tr>
</thead>
</table>

Table 3. Effect of Flow Rate and Endotracheal Tube Diameter on the Deposition of an Externally Generated Aerosol

<table>
<thead>
<tr>
<th>Air Flow (L/min)</th>
<th>ET (mm)</th>
<th>Percent Deposition*</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>36</td>
<td>5</td>
<td>10.7</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>12.3</td>
</tr>
<tr>
<td>60°</td>
<td>9</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11.0</td>
</tr>
</tbody>
</table>

ET = endotracheal tube

*Percent of nominal dose (by weight) of metoproterenol or albuterol administered with a cuffed adapter connected to the ET. Metered-dose inhaler actuated into a continuous flow of air.

*Data from Oppen ST, Bishop MR. Delivery efficiency of metered-dose aerosols given via endotracheal tubes. Anesthesiology. 1989;70(6):1006–1010.

The presence of an endotracheal tube (ETT) poses a particular problem with the delivery of a therapeutic aerosol from an external generator. In adults these tubes are generally 7–9 mm internal diameter, up to 30 cm in length, and are often bent up to 90°. Because of these features, the ETT is an important site of impaction of externally generated aerosol particles. Indeed, therapeutic aerosol through an ETT can be as little as 20% of the delivery that would normally occur through the natural upper airway (Table 3). Table 3 illustrates the combined effects of increasing air flow velocity and reducing ETT diameter on deposition of an externally generated aerosol within the tube. The ETT material may also impact deposition. Specifically, certain types of plastics may promote aerosol rain-out and the presence of an electrostatic charge on the tube can also reduce the ability of the aerosol to pass through it.

Intratracheal Aerosol Delivery

Because of the impact of the ETT, attempts have been made in recent years to develop strategies to generate an aerosol beyond the ETT (ie, within the trachea or bronchi). Generating the aerosol distal to the tube offers not only the benefit of larger amounts of aerosol reaching the lung, but it can also affect the optimal particle size distribution needed for effective delivery. Specifically, if the aerosol could be generated distal to the upper airways and ETT, larger particle sizes conceivably could be utilized. To illustrate this concept, Figure 1 shows predicted deposition of aerosols of different particle size using a computer lung model and a 0.5 L/s inspiratory flow when the aerosol is generated in the trachea, as opposed to externally. Note from Figure 1 that larger particle sizes generated intratracheally would be expected to penetrate deeper into the lung and have a better therapeutic effect than the same size particles generated externally. Another obvious effect of an intrairway aerosol generator is that the device could be guided either radiologically or under direct vision to specific lung regions for very directed drug targeting (eg, radiopharmaceuticals for cancers, antibiotics for pneumonia).

The first attempt to produce an aerosol within the lung was the simple use of a long extender on a standard metered-dose inhaler. Though this approach can place the aerosol exit site inside the airway, the very high velocities that come out of a metered-dose inhaler causes substantial impaction of the aerosol at the carina and in the mainstem bronchi. Because of this, this technique has not been used extensively. Another limitation is that only drugs packaged as metered-dose inhalers could be delivered in this fashion.

In 1994 a novel system was introduced that uses a small diameter (1 mm) multi-lumen catheter capable of producing an aerosol with a therapeutically appropriate particle
Intratracheal Catheters as Drug Delivery Systems

Fig. 2. Schematic of a prototype aerosol-generating catheter. Liquid is delivered through the central lumen and gas is delivered through the peripheral lumens. At the interface of these lumens, at the catheter tip, an aerosol is created. (Photo courtesy of Trudell Medical International, London, Ontario, Canada.)

size. Figure 2 shows a schematic of this catheter system, in which the liquid is delivered down the central lumen and gas is delivered through the peripheral lumens. The tip of this catheter is tapered such that at the interface of the liquid and gas lumens an aerosol can be created. Depending on gas flow (typically 0.8–1 L/min), 0.5–2.0 mL/min of liquid can be aerosolized, with particle sizes in the therapeutic range. In a glass model of the first 4 branches of the human tracheobronchial tree this device has been shown to increase alveolar and airway deposition, compared to a standard external nebulizer aerosol delivered through an endotracheal tube (Table 4).

There are other conceptual approaches to placing the aerosol generator within the lung. For instance, a miniaturized ultrasonic system might be placed at the tip of a catheter, over which a liquid is delivered. One of the advantages of this approach over the jet catheter described above is that no extra flows or pressures are delivered to the lung and the particle velocity is virtually zero. Two other recently introduced aerosol generating techniques might also be miniaturized to produce a high-quality, low-velocity aerosol within the airway. The first is a device that uses a high-velocity oscillating membrane to create aerosols by forcing liquids through tiny pores. The second approach places an electric charge on an extruded liquid to break the surface forces and create an aerosol. In the future it is also conceivable that dry powder generators might also be miniaturized and placed at the distal end of a catheter inserted through the ETT.

Combining an Intratracheal Aerosol System with Tracheal Gas Insufflation

Tracheal gas insufflation (TGI) requires a small-diameter catheter to be placed within the ETT, with its distal tip proximal to the carina. The primary purpose of TGI is to supply fresh gas, principally through the expiratory phase, to clear effective dead space. The conceptual advantage is that smaller tidal volume can be used and thus lower end-inspiratory volumes and pressures can be applied to the chest during mechanical ventilation. This may be particularly important when conventional mechanical ventilatory strategies are producing excessive end-inspiratory "stretch" and efforts are being made to reduce this.

Because TGI has a catheter already within the ETT, coupling it to an intratracheal aerosol-generating system is certainly possible. For the jet catheter design noted above, the TGI gas flow could actually double as the gas being used to generate the aerosol during inspiration. Other systems that do not require gas flow could have the fluid catheter attached to the TGI catheter and the aerosol generator mounted on the distal end.

Another potential use of an intratracheal aerosol generator during TGI is to condition the TGI gas flow with moisture. On current TGI systems under development, the humidification of gases generally takes place before gas enters the TGI catheter, often using separate humidification systems that are not designed for the high pressures required for TGI. The intratracheal techniques described above, however, could be used to generate a bland aerosol to provide the necessary airway moisture and thereby obviate a separate humidification system.

Bland aerosol generation has been described previously as a technique for conditioning dry gas during mechanical ventilation. Its safety and efficacy, however, are controversial. On the one hand, several studies have shown that small-particle bland aerosols from standard nebulizers can significantly impair gas exchange in as little as 30 minutes. The mechanism for this is thought to be occlusion of small airways by 1–5 μm water droplets. It should be noted, however, that all of those studies used systems that generated several-fold more water than would be required for normal humidification (40 mg or microliters of water per liter of ventilation). Moreover, the particle sizes, though appropriate for drug delivery to the lung, were excessively small for targeting moisture delivery to the major airways. In contrast, a bland aerosol TGI gas-conditioning strategy would use much smaller liquid volumes.

<table>
<thead>
<tr>
<th>Percent Deposition In</th>
<th>Circuit</th>
<th>ET tube</th>
<th>Airways</th>
<th>Alveoli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Externally-generated</td>
<td>79</td>
<td>10</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Catheter</td>
<td>18</td>
<td>15</td>
<td>56</td>
<td>11</td>
</tr>
</tbody>
</table>
(TGI gas flow is only a fraction of total minute ventilation), would generate fewer very-small particles, and would be delivered only during exhalation. The small amount of aerosolized water with this approach would thus be delivered primarily to the trachea and endotracheal tube where atelectasis concerns are not an issue and where the water particles can also serve as an evaporative source of moisture. It therefore may be quite reasonable to use bland aerosol generation of appropriate volumes and particle size to provide the airway moisture necessary for effective TGI. Supporting this concept is the safe and effective use of a jet nebulizing system to provide moisture to jetted gas at the proximal ETT during high-frequency jet ventilation.}

Summary

A growing number of medications are being developed that are designed to be delivered into the lungs. Aerosol delivery of these medications from an external generating system into the patient's lungs, even under the best of circumstances, is less than 50%, and delivery efficiency usually drops to less than 10% in the presence of an ETT. Novel aerosol generating systems at the end of small-diameter catheters that can be placed into the trachea (or beyond) are being developed to address this. In vitro testing has shown these systems to be capable of producing appropriately sized particles, with high rates of lung deposition. These catheters could be coupled with TGI systems not only to deliver therapeutic aerosols but also to create water aerosols to supply the necessary moisture for TGI gas flow.

REFERENCES

Tracheal Gas Insufflation: Overcoming Obstacles to Clinical Implementation

Dean R Hess PhD RRT FAARC and Neil R MacIntyre MD FAARC

Introduction

Tracheal gas insufflation (TGI) is the injection of gas into the distal trachea to functionally reduce dead space and thereby improve the efficiency of mechanical ventilation. In the context of a lung-protective mechanical ventilation strategy, the objective of TGI is to permit a reduction in tidal volume and thus alveolar distending pressure. In other applications, TGI may be useful to decrease the ventilation requirement for a target arterial partial pressure of carbon dioxide. At this conference, clinical investigators involved in the development of TGI reviewed both technical aspects and data from TGI experiments in lung models, animals, and human subjects. Their written commentaries comprise the papers published in this issue of Respiratory Care.

Despite considerable academic and clinical interest, approved TGI systems are not available in North America and use is thus limited to clinical studies. Commercial systems to provide TGI are being developed and several may become available in the near future. The use of jury-rigged systems to provide TGI is discouraged, primarily because of the potential for complications related to the TGI-ventilator interaction. When TGI systems become available, the information published in this issue of Respiratory Care should provide valuable information for clinicians using this technique.

Because it was attended by clinicians, researchers, and industry representatives, this conference provided a unique opportunity to discuss a variety of issues related to implementation of TGI. Clinicians desire a system that is safe, efficacious, easy to use, and affordable. Industry, in trying to address these concerns, is faced with regulatory issues that must be overcome before TGI systems can marketed.

At the end of this conference a series of questions were presented to the attendees as points for discussion. The group responses to these questions provide the basis for this summary.

What Additional Lung Model and Animal Studies Are Needed?

Many lung model and animal model studies of TGI have been conducted and much has been learned from these. Some additional studies of this type may be necessary to further our understanding of the mechanisms whereby TGI facilitates CO₂ clearance. For example, in various clinical situations (e.g. airway obstruction, unilateral lung injury, parenchymal disease) what TGI flows are needed and when should they be applied during the respiratory cycle? Another important role of lung model studies is the characterization of commercial systems before they are used clinically. Prototypes can be tested on models to understand their functional characteristics and to identify issues that might have clinical relevance. This relates to both TGI flow controllers and the catheters or endotracheal tubes used for TGI. For example, animal models may be necessary to assure that airway mucosal injury does not occur. Animal and/or lung model studies are also necessary to demonstrate adequate humidity delivery with these devices.

What Clinical Studies Are Needed?

The consensus of the group was that the beneficial effects of TGI on lung distention should improve clinical outcomes. However, it was recognized that studies using mortality or ventilator-free-day end points would require large clinical trials that are impractical. Given the perceived safety of properly designed TGI systems, the group therefore agreed that physiologic studies of TGI are all that is currently needed to demonstrate safety and efficacy. Appropriate physiologic outcomes for TGI include reduction in arterial partial pressure of carbon dioxide, reduction...
in tidal volume and peak alveolar pressure, and reduction in minute ventilation.

What Clinical Study Design Is Necessary?

For assessment of physiologic outcome variables, a crossover design should be adequate. Although a randomized design can be used in which patients are assigned to receive TGI or standard therapy without TGI, this approach adds little scientific value over a crossover design and is considerably more costly to perform. Moreover, the physiologic effects of TGI in crossover studies can be assessed in several hours. Longer studies (ie, days) of TGI are necessary to assess long-term effects of TGI—such as safety, stability of physiologic benefit, and device reliability in the clinical arena. The effects of TGI should be assessed for patients who are fully supported by the ventilator as well as for those who are triggering the ventilator.

What Safety Variables Should Be Assessed?

Safety issues with TGI that should be studied include humidification, intrinsic positive end-expiratory pressure, airway injury, triggering, device reliability, and TGI-ventilator interactions. Note that many of these safety issues do not require human studies to answer the important questions. However, clinical verification of these issues in human observational studies should be done.

In What Patient Populations Should Tracheal Gas Insufflation Be Studied?

Because of concern about over-distention lung injury for acute respiratory distress syndrome patients, it is reasonable to study the use of TGI in these patients first. However, over-distention lung injury can also occur in other lung diseases that require mechanical ventilation. For instance, TGI may have important applications for patients with obstructive lung disease in which regional overinflation is common. Indeed, any lung disease requiring mechanical ventilation and in which regional overdistention is possible could benefit from TGI.

Design Issues: Should Tracheal Gas Insufflation Be Applied with a Catheter or Special Endotracheal Tube? What Is the Best Design? Should It Be Applied Continuously or Intermittently?

TGI can be applied using either a catheter passed through the lumen of the artificial airway or through a lumen designed into the wall of the artificial airway. Neither approach is clearly superior to the other. However, application of TGI should not require reintubation of the patient.

The importance of catheter tip design (ie, forward flow, reverse flow, or combination) is unclear. Forward flow seems to augment gas mixing, but reverse flow seems to reduce the potential for increasing intrinsic positive end-expiratory pressure. Both designs have been shown to be effective, and there are currently no data that show a clear superiority of one design over the other.

The choice of continuous versus expiratory-phase TGI is often based on the bias of the investigator. Continuous TGI uses a simpler gas delivery design. With continuous TGI, however, pressure or flow relief valves are needed to account for the effect of the TGI flow during the inspiratory phase (ie, device design must make TGI flow invisible during the inspiratory phase).

What Needs To Be Monitored and/or Alarmed during Tracheal Gas Insufflation?

Although exhaled CO₂ analysis can be used to guide TGI settings, TGI systems should not require the routine use of capnography. The system should allow the ability to monitor intrinsic positive end-expiratory pressure or dynamic hyperinflation secondary to TGI. It is helpful to know the TGI volume insufflated. A mechanism should be in place so that the volume measured by the ventilator can be corrected for the TGI flow. A mechanism must be provided to detect an obstruction in the artificial airway.

What Cost Barriers Are Important to the Introduction of Tracheal Gas Insufflation?

There are costs associated with the TGI controller, the catheter, and the education of clinicians to use the system. Additional costs include those required to do the necessary studies to demonstrate safety and efficacy to clinicians, regulatory agencies, and payers. The cost of the system should be commensurate with the benefit derived from TGI.

Summary

This commentary represents our review of the group response to questions regarding the obstacles to clinical use of TGI. This, along with the accompanying papers in this issue of Respiratory Care, should help industry, regulators, investigators, and clinicians with the introduction of this technology to the care of mechanically ventilated patients.

The authors, in the preface to Interventional Pulmonology, define the book as a reference source for interventional pulmonologists as well as for pulmonologists referring or caring for patients who have undergone the procedures described in this book. While many of the chapters deal with procedures that are well within the purview of most practicing pulmonologists, such as thoracentesis, closed pleural biopsy, transbronchial needle aspiration, and chest tube placement, others are more likely to be performed in referral centers. In fact, in the preface the authors support the definition of interventional pulmonology as those procedures that require training beyond that of the typical pulmonary and critical care fellowship. The primary audience for this book is practicing pulmonologists. However, respiratory therapists who assist in these procedures would also find this text useful.

The book is organized into three sections. The first part describes various aspects of therapeutic bronchoscopy; the second part deals with medical thoracoscopy; and the final part groups miscellaneous procedures such as percutaneous tracheostomy, transbronchial needle aspirations, and thoracentesis. The initial chapters in the section on bronchoscopy include a general overview of bronchoscopy and maintenance of the flexible bronchoscope, which, while of interest to respiratory therapists, are adequately addressed in other sources.

The chapter on laser bronchoscopy, while thorough, includes a fair amount of laser physics, which may be of limited use to the readers of Respiratory Care, but the section dealing with contraindications and indications for laser bronchoscopy, is useful from the standpoint of referring pulmonologists. The section on stents, including separate chapters for both silicone stents and expandable wall stents, is particularly well done. The illustrations are very helpful. The discussion is quite thorough regarding the pros and cons of various stents. It includes a very thorough review of the silicone stents currently available.

The second section of the book is devoted to medical thoracoscopy. This section addresses routine chest tube placement, but the bulk of the section deals with thoracoscopic inspection and biopsy of the pleural space, and management of pleural space problems such as pneumothorax and pleural malignancy. The author’s definition of medical thoracoscopy emphasizes the fact that this procedure is performed by pulmonologists, as opposed to thoracic surgeons, and that the primary role is diagnosis rather than treatment. In this reviewer’s opinion, these procedures are more commonly within the realm of thoracic surgery in most communities. Nonetheless, the description and illustrations are quite informative and the chapters are well written. They include a very nice, abbreviated review of the literature regarding pleurodesis with talc versus other agents.

The final section of the book contains chapters dealing with various procedures. These include transbronchial needle aspiration, transtracheal oxygen therapy, thoracentesis, enclosed pleural biopsy, and percutaneous tracheostomy. Many of these are within the traditional training of most pulmonologists, and may prove valuable to respiratory therapists.

In general, the book is written from a very practical standpoint. This is a text about procedures, and the authors certainly have kept that focus in mind. The chapters are relatively brief and reasonably comprehensive. At the end of most chapters there is a section (written by an expert) entitled “How I Do It,” with a step-by-step description of his or her technique. The book, of course, is not a substitute for actual training in these techniques by an expert, but would serve as a useful reference to pulmonary physicians performing these procedures, both from a standpoint of having a ready reference regarding an expert’s technique and to provide a succinct review of the procedure and the relevant literature associated with it. The book does have a place in a respiratory therapy department library, particularly in facilities that are involved with performing any of the invasive procedures discussed in the text.

John K Naylor MD
Deaconess Medical Center
Spokane, Washington

This diagnostic and laboratory test reference is well designed. The handbook uses a consistent format that allows tests and diagnostic procedures to be found quickly without loss of the discussion needed for a complete understanding. The following information is provided:

Name of the test: Complete name with a list of abbreviations and alternative test names following each main entry.

Type of test: This section helps the reader identify the source of the laboratory specimen (eg, blood) or type of diagnostic procedure (eg, chest radiograph).

Normal findings: Normal values are listed for infants, children, adults, and the elderly. Where appropriate, separate values are listed for male and female.

Possible critical values: These are threshold values that when crossed generally require immediate intervention.

Test explanation and related physiology: This section includes information about the test, specific indications for the test, how the test is performed, what disease pathology or disorder the results may show, and related pathophysiology.

Contraindications: These data alert the reader to patients who should not have the test.

Potential complications: This section describes potential problems that may require astute assessments and interventions.

Interfering factors: Many factors such as drugs can interfere with test results (a special icon is used to alert the user when drugs might interfere with the test).

Procedure and patient care: This section is divided into before, during, and after time sequences. The procedure for conducting the test is described and the information that
should be presented to the patient is discussed for each time interval.

Home care responsibilities. Early discharge from the hospital and outpatient testing were the motivating forces for including this section. The authors believe “that patients and their families have the responsibility for detecting potential test-related problems in the home setting.” This section identifies key areas for assessment and provides instruction for what to do when problems are detected.

Abnormal findings: Abnormally high and low values are listed where appropriate.

A blank space is included at the end of the last section for each test, for individualizing the studies to the institution performing the test.

This reference manual is appropriate for use in respiratory therapy programs when students are in the hospital on clinical rotation. The book is small enough to be easily slipped into the pocket of a uniform jacket, where it would be invaluable to the student clinician. The book would be very useful for respiratory therapy students trying to develop critical thinking skills through problembased learning. This manual would be a great reference for use in courses that present or are organized around clinical cases where large numbers of laboratory tests and laboratory procedures must be understood and interpreted.

During my review of this manual only a few limitations were identified. The section on oximetry did not mention false readings due to nail polish, skin pigmentation, or inadequate perfusion during shock. The accuracy range of and the way to correlate the oximeter heart rate with readings by auscultation or electrocardiogram were not presented. The only desaturation threshold mentioned was a possible critical S_{ao2} [oxygen saturation measured via pulse oximetry] of $\leq 75\%$. No guidance was given regarding the range of variance for multiple S_{do2} readings during spot checks. Under contraindications, no warning is given to not use pulse-oximetry with patients suffering from carbon monoxide poisoning. Under the arterial blood gas analysis entry, the discussion on sampling does not encourage the user to collect blood from the nondominant hand if possible. The additional complications related to gathering a sample at sites other than the radial arteries are not discussed. The arterial blood gas analysis procedure and patient care section states, “note that an arterial puncture is performed by laboratory techni-

cians, respiratory-inhalation therapists.” The authors and publisher should have known that the term “inhalation therapist” was retired 20 years ago. The chest radiograph abnormal findings are listed without any detailed discussion on what may be observed (e.g., “diaphragm” has only one listing: diaphragm/hiatal hernia) with no discussion of flat diaphragms observed with hyperinflation. Under pulmonary function tests, “functional residual capacity” is described as “functional residual volume,” breaking the cardinal pulmonary physiology rule that two or more lung volumes are always described as a capacity.

Overall this is a very well researched and well written reference manual. Despite the limitations mentioned above, the book should be a very useful addition to the personal libraries of respiratory therapy students who are presented with a battery of laboratory and diagnostic procedures that must be understood and interpreted.

Thomas A Barnes EdD RRT FAARC
Department of Cardiopulmonary
and Exercise Sciences
College of Health Sciences
Northeastern University
Boston, Massachusetts

Many modern intensive care ventilators monitor airway mechanics and display flow, volume, and pressure waveforms. Using ventilator waveforms might improve ventilator management, provided the clinician can make optimal use of this additional information. The aim of Rapid Interpretation of Ventilator Waveforms is to provide a more comprehensive and detailed look at ventilator waveform analysis than regular textbooks. The authors emphasize that the beginning to improve understanding of how ventilator waveforms are generated and how waveforms reflect abnormal conditions during mechanical ventilation. More than 140 waveform samples—conceptual illustrations and real waveform tracings—are presented in 5 chapters and 5 case studies.

The first two chapters cover the basic principles of ventilator waveform analysis. First the reader is made familiar with the basic flow-versus-time, pressure-versus-time, and volume-versus-time waveforms. Starting out with an example, changes in ventilator settings and their corresponding ventilator waveforms are discussed. Several graphs are used to explain the interdependence of respiratory rate, inspiratory flow, and inspiratory to expiratory time, as well as the influence of airway mechanics on pressure-versus-time waveforms. At the end of the first chapter, tracings of commonly employed modes of ventilation are shown in two formats to compare simplified illustrations with original patient tracings.

The second chapter examines the pressure-volume and flow-volume relationships of the respiratory system during mechanical ventilation. Illustrations of the static pressure-volume curve, and real-time recordings of corresponding pressure-volume (P-V) and flow-volume loops are used to explain their specific patterns because of changes in compliance and airway resistance. In this context the authors also explain how the P-V loop reflects dynamic compliance, work of breathing, and the meaning of the inflection points on the compliance curve.

The next two chapters are more oriented to the clinical application of waveform analysis. Using real-time recordings, characteristic waveform patterns of the most common ventilation modes and their combination (e.g., synchronized intermittent mandatory ventilation with pressure-support ventilation) are discussed. The following chapter presents common clinical situations, such as acute changes in compliance, alveolar over-distention, and detection of a blocked or kinked endotracheal tube. Several tracings are used to discuss the problems caused by increased airway resistance. The assessment of bronchodilator therapy using before-and-after flow-volume and P-V loops is discussed in detail, as well as the detection of dynamic hyperinflation and intrinsic positive end-expiratory pressure. Also covered in this chapter is the detection of patient-ventilator dys-synchrony due to insufficient inspiratory flow or inappropriate trigger sensitivity.

The final chapter addresses special aspects of waveform analysis during ventilation of neonates and small infants. Although some of the information given had already been presented in previous chapters, special problems such as volume loss due to cuffless endotracheal tubes, detection of right mainstem intubation, and accidental extubation are covered in this chapter. Finally, 5
The use of illustrations of patients with abnormal ventilator waveforms is presented in the appendix. Since most of the graphs are taken from the previous chapters, the appendix is a good review for the reader.

Rapid Interpretation of Ventilator Waveforms is the only book I know of that is solely dedicated to ventilator waveform analysis. Its major strength lies in the numerous waveform examples and the color printing that makes it easy to distinguish between various waveforms in the same illustration. However, the approach to keep the "descriptions and commentary...to a minimum to enhance clarity and readability" (as stated by the authors in the preface) has its shortcomings. Especially some examples in the second chapter suffer from short, misleading, and even inaccurate information. For instance, the definition of the lower inflection point is too short, and the authors do not make clear that the lower inflection point (reflecting alveolar recruitment) is, ideally, taken from a static P-V curve or at least from a P-V loop with very low constant inspiratory flow. I would have also expected that the authors explain the pitfalls that during pressure-targeted ventilation the observed "inflection point" on the P-V loop is an artifact and is due to the basic gas delivery pattern of pressure-control ventilation. At that point I also found the only major mistake in the book, where the authors state that "under conditions of normal resistance and compliance the P-V loop of a pressure-targeted breath is very similar to a volume-targeted breath." By definition, the P-V loop during constant-flow ventilation and pressure-targeted ventilation cannot be similar. During pressure-control ventilation most modern ventilators deliver such high inspiratory flows that the set targeted pressure is almost instantaneously reached and maintained until the end of inspiration. Therefore the pressure in the P-V slope will quickly increase, with an "inflection point" close to the set pressure, forming an almost vertical slope, until the end of inspiration. On the other hand, constant flow ventilation will generate a linear increase in pressure and volume, reaching the maximum pressure at the end of the breath.

Another inaccuracy regarding different modes of ventilation occurs for the definition of dynamic compliance, since the given definition is only true for volume-targeted breaths. As already pointed out, the pressure is almost constant during pressure-control ventilation. In that circumstance, dynamic compliance corresponds to pressure and delivered tidal volume only when inspiratory time is long enough that inspiratory flow during pressure control is almost zero.

Overall, the given information covers most of the clinical situations in which waveform analysis will provide additional information. The authors have reached their goal to write a comprehensive workbook that will enable the reader to use the acquired information at the bedside. The quality of illustrations is excellent, the accompanying text is easy to read, but some aspects need to be more accurately presented. Rapid Interpretation of Ventilator Waveforms is a valuable reference source about waveform analysis for the respiratory care student, respiratory therapist, and critical care nurse, as well as for physicians caring for mechanically ventilated patients.

Max Kirmse MD
Department of Anesthesia and Critical Care
University of Erlangen-Nürnberg
Erlangen, Germany

Dr. Melander and Dr. Bucher are well known to critical care nurses. Their previous work, the lengthy, complex Critical Care Nursing, is regarded as a valuable, evidence-based reference and systematic study guide.

The Pocket Companion for Critical Care Nursing, essentially a précis of their previous work, is intended to be a reference pocket volume for use at the bedside by the hands-on practitioner. There is a substantial nursing market for portable, quick-look information texts, in part as a result of the increasing technological and work-load demands for critical care clinicians, and the declining shelf-life of the experienced intensive care unit nurse. The authors of this book, although intending their primary readership to be nurses, also hope to reach other members of multidisciplinary clinical teams, including respiratory therapists and physicians.

The text is therefore wide-ranging in scope and subject matter. Organized around a body-system basis, each of the 7 sections begin with a brief anatomy and physiology review, followed by assessment, diagnosis, and treatment of illnesses commonly encountered in critical care. Prose clarity renders the book easily readable, there are nicely arranged and accurate tables, and there is little overlap throughout—especially admirable in view of the wide range of subject matter in more than 500 densely packed pages. Notable are the diagnostic testing guides, something most practitioners have not frequently memorized. There are particularly useful and coherent sections dealing with human immunodeficiency virus opportunistic infections, simple and mixed acid-base disorders, and a well arranged and easily understood guide for bedside pulmonary measurements and respiratory pharmacology.

There is marked contrast in the implied prerequisite knowledge level and practitioner focus. For example, there is a full photographic page of testing for pitting edema, algorithms of diagnostic guides for blunt and penetrating abdominal trauma, as well as various concrete patient-teaching suggestions. The directions for basic critical care nursing procedures are accurate and clear, but in the context of quick-look bedside needs, perhaps redundant. For example, a detailed 18-step prescription for correct endotracheal tube suctioning focuses on appropriate matters of equipment utilization and a protocol for organized clinical assessment. This is valuable and technically accurate, but of more use for the beginning student than for the daily practitioner in search of a rapid reference.

The book's weight and size preclude carrying it in a scrub pocket, and the lack of tab dividers and the spread of subject text over several pages hinders immediate access of material. The attractive cover does not lie flat when opened and is not laminated; it is therefore difficult to use by the bedside. Additionally, given the range and volume of material, the print is necessarily quite small: for example, the advanced cardiac life support algorithms are tiny and blurred, hard to read under the most tranquil conditions.

Overall, the content is of the high quality and accuracy that is associated with these authors' work, their attempt to produce a précis of their large text not unsuccessful, and, indeed, of potential interest and value to a range of practitioners. However, although criteria for the ideal rapid pocket reference are necessarily somewhat subjective, most nurses are looking for a focus on immediate quick-look information. Frequently sought is easily readable, brief and highly focused information about vasoactive drip.
rates and concentrations, hemodynamic numbers, ventricular pacing, advanced card-iac life support protocols, and emergency medications, all this in a small waterproof volume that can be put in a pocket, that will survive a day at the bedside, and preferably that has the ability to allow for a degree of individual inserts and rearrangement.

I recommend this volume for less urgent and inconvenient circumstances than the bedside.

Jane Cardell RN
Cardiac Intensive Care Unit
Harborview Medical Center
Seattle Washington

John H Gibbon, the subject of the book, was known intimately by the author, himself a cardiac surgeon of renown. As such, the author, Schumacker, seeks to describe “in general terms” what Dr Gibbon contributed to cardiothoracic surgery specifically and medicine generally, as well as to describe him “as a person.” In both of these the author achieves his aim.

There are several reasons why this is a valid and important undertaking. John Gibbon was born in 1903, into tremendous intellectual and educational potential and promise. During his career he saw the introduction of antibiotics, advances in anesthesia, development of residency training, and the evolution of thoracic surgery, the last hurdle of which was the ability to operate within the heart and support oxygenation mechanically. As such, Gibbon’s life might be considered a metaphor for the medical aspects of “The American Century.”

The author paints, as he himself describes in the introduction, not a chronological description of the development of either the heart-lung machine or Gibbon’s career development, but rather images to allow a fuller description of the man and the creation. In a sense, he achieves a certain Seurat-like painting—one which viewed from a distance is pleasing, but with closer observation one realizes that the portrait is a carefully constructed conglomerations of points.

These points are both tantalizing and revealing. We are told that the subject could not relate to his children verbally, but that he had very warm feelings toward them, expressed in nonverbal pursuits. He was considered a kind, gentle, and intellectual man, but also there are hints of pride, rage, and resolve, almost to the point of complete self-absorption.

Gibbon, who wanted to be a poet and artist, married Malay, trained as an artist but who wanted to be a medical researcher. In fact they met in Dr Churchill’s lab. Perhaps it was Gibbon’s wistfulness that allowed him to wonder, as he watched a patient labor under a hypoxic stress of a massive pulmonary embolism, about the feasibility of developing extracorporeal circulation. Certainly, he seems to be more intrigued by the physiologic problem than the device itself. Having demonstrated its effectiveness, he turned his attention to an entirely different arena.

The author does achieve his aims of describing in general terms the history of the development of extracorporeal circulation. He specifically avoids technical details that are well-described elsewhere, and instead focuses on how Dr Gibbon’s overall style of research allowed him to concentrate on the development of the machine based on both his own and others’ research. It might have been helpful to review briefly, but in more detail, some key research work done by Dr Gibbon, as illustration of where he was at particular times. Dr Schumacker describes with great enjoyment the contributions of both the subject of his narrative and of others in the field. When one realizes the diverse personalities (such as Charles Lindbergh and Alexis Carrel) who were involved in studying the problem, it is clear that this is a story that should be savored.

Some may find the book difficult to read. The author “leaps about,” with earlier chapters describing Gibbon’s lineage, particularly as far as the Confederate side is concerned, with later descriptions of his great uncle, John Gibbon, leader of the union “Black Hat Brigade” (also recognized by Stonewall Jackson’s men as “those damn blackhat fellows” after a stiff engagement). There is only one egregious error, in my mind. This occurs when, describing General Gibbon’s role at Gettysburg, the author attributes General Sickie’s ludicrous maneuver, pushing III Corp into the peach orchard, to “Hancock the Magnificent.” The author also dwells excessively on the numerous awards and degrees that were given to Dr Gibbon. It would have been better to list them in an appendix and select a few important ones to describe their importance in better detail.

In the end, there are several reasons to read this book. Anyone with an interest in mechanical circulatory support (including thoracic surgeons, perfusionists, cardiologists, and pulmonary intensivists) will enjoy the developmental stages described. Young surgical investigators and older established educators will see parallels in the struggle to perform good research, based on “the question” rather than “the anticipated result.” Educators will recognize the struggle that Gibbon foresees in encouraging academic surgeons to dedicate time to research and teaching. All physicians will be interested in the observations Gibbon made predicting the pros and cons regarding health maintenance organizations.

If Gibbon had never worked on the heart lung machine, his achievements in education, teaching, and research would still be impressive. One wonders if current administrators and chairmen appreciate the value of good science. Young surgeons considering embarking on an academic career should consider the trials and tribulations this may cause for family life. Finally, the lay public would enjoy reading about a man who exemplified all that is best about medical care and research. Like Jonas Salk, John Gibbon refused to profit from his discoveries and did not patent the bypass machine. In the end, Harris Schumacker leaves us wondering, wistfully, if John Gibbon was “one of the few good men,” the like of which are rarer and rarer.

Riyad Karno-Jones MD
Division of Cardiothoracic Surgery
Harborview Medical Center
University of Washington
Seattle, Washington

REFERENCE
THE 2000 BOUND
VOLUME OF
RESPIRATORY CARE
AVAILABLE JANUARY 2001

Volume 45 is bound in a blue buckram cover and may be imprinted, free of charge, with your name or the name of your organization. Each volume is "$40 for current AARC members and $80 for non-members. Shipping is included for U.S. and Canadian residents.

Available for a limited time, older bound volumes at discounted rates.

ORDERS MUST BE PREPAID—INCLUDE CHECK, INSTITUTIONAL PURCHASE ORDER, OR VALID CREDIT CARD NUMBER.

☐ 2000 VOLUME AT $40/80 ☐ 1995 VOLUME AT $35/75
☐ 1999 VOLUME AT $40/80 ☐ 1994 VOLUME AT $35/75
☐ 1998 VOLUME AT $40/80 ☐ 1993 VOLUME AT $30/70
☐ 1997 VOLUME AT $40/80 ☐ 1992 VOLUME AT $30/70
☐ 1996 VOLUME AT $40/80 ☐ 1990 VOLUME AT $30/70

☐ CHECK ☐ PURCHASE ORDER ☐ VISA ☐ MASTERCARD
CARD OF PURCHASE ORDER EXP DATE
SIGNATURE
AARC MEMBER #
NAME
INSTITUTION
ADDRESS
CITY STATE ZIP
NAME TO IMPRINT

DAEDALUS ENTERPRISES INC
PO BOX 29486 • DALLAS TX 75229 • FAX (972) 484-7720

Now is the time to begin preparing your Open Forum 2001 abstract!

Early deadline May 31, 2001
Final deadline July 17, 2001

CHEERS

Thanks to two million volunteers, MDA is the first voluntary health agency to receive the American Medical Association's Lifetime Achievement Award for "significant and lasting contributions to the health and welfare of humanity."

LET'S HEAR IT FOR VOLUNTEERS!

MUSCULAR DYSTROPHY ASSOCIATION
1-800-572-1717 • www.mdauso.org
MEMBERSHIP APPLICATION

Please read the eligibility requirements for each of the classifications in the right-hand column, then complete the applicable section. All information requested below must be provided, except where indicated as optional. See other side for more information and fee schedule. Please sign and date application on reverse side and type or print clearly. Processing of application takes approximately 15 days.

<table>
<thead>
<tr>
<th>Active</th>
<th>Associate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreign</td>
</tr>
<tr>
<td></td>
<td>Physician</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
</tr>
<tr>
<td>Special</td>
<td>Student</td>
</tr>
</tbody>
</table>

Lost Name __

First Name __

Social Security No. ______________________________________

Home Address __

City __ Zip __________

State __ Zip __________

Phone No. (________)

Primary Job Responsibility (check only)

- Technical Director
- Assistant Technical Director
- Pulmonary Function Specialist
- Instructor/Educator
- Supervisor
- Staff Therapist
- Staff Technician
- Rehabilitation/Home Care
- Medical Director
- Sales
- Student
- Other, specify __________________________

Type of Business

- Hospital
- Skilled Nursing Facility
- DME/HME
- Home Health Agency
- Educational Institution
- Manufacturer or supplier
- Other, specify __________________________

Date of Birth (optional) __________ Sex (optional) __________

U.S. Citizen? Yes No

Have you ever been a member of the AARC? __________

If so, when? From __________ to __________

Preferred mailing address: Home Business

FOR ACTIVE MEMBER

An individual is eligible if he has lived in the U.S. or its territories or was an Active Member prior to moving outside its borders or territories, and meets ONE of the following criteria: (1) is legally credentialed as a respiratory care professional; or employed in a state that monitors such, OR (2) is a graduate of an accredited educational program in respiratory care, OR (3) holds a credential issued by the NBRC. An individual who is an AARC Active Member in good standing on December 8, 1994, will continue as such provided his/her membership remains in good standing.

PLEASE USE THE ADDRESS OF THE LOCATION WHERE YOU PERFORM YOUR JOB. NOT THE CORPORATE HEADQUARTERS IF IT IS LOCATED ELSEWHERE.

Place of Employment __

Address __

City __ Zip __________

State __ Zip __________

Phone No. (________)

Medical Director/Medical Sponsor __________________________

FOR ASSOCIATE OR SPECIAL MEMBER

Individuals who hold a position related to respiratory care but do not meet the requirements of Active Member shall be Associate Members. They have all the rights and benefits of the Association except to hold office, vote, or serve as chair of a standing committee. The following subclasses of Associate Membership are available: Foreign, Physician, and Industrial—Individuals whose primary occupation is directly or indirectly devoted to the manufacture, sale, or distribution of respiratory care equipment or supplies. Special Members are those not working in a respiratory care-related field.

PLEASE USE THE ADDRESS OF THE LOCATION WHERE YOU PERFORM YOUR JOB. NOT THE CORPORATE HEADQUARTERS IF IT IS LOCATED ELSEWHERE.

Place of Employment __

Address __

City __ Zip __________

State __ Zip __________

Phone No. (________)

FOR STUDENT MEMBER

Individuals will be classified as Student Members if they meet all the requirements for Associate Membership and are enrolled in an educational program in respiratory care accredited by or in the process of seeking accreditation from, an AARC recognized agency.

SPECIAL NOTICE — Student Members do not receive Continuing Respiratory Care Education (CRCE) transcripts. Upon completion of your respiratory care education, continuing education credits may be pursued upon your reclassification to Active or Associate Member.

School/RC Program __________________________

Address __

City __

State __ Zip __________

Phone No. (________)

Length of program

- 1 year
- 2 years
- Other, specify __________________________

Expected Date of Graduation (REQUIRED INFORMATION)

Month __________ Year __________
Demographic Questions
We request that you answer these questions in order to help us design services and programs to meet your needs.

Check the Highest Degree Earned
- High School
- RC Graduate Technician
- Associate Degree
- Bachelor's Degree
- Master's Degree
- Doctorate Degree

Number of Years in Respiratory Care
- 0-2 years
- 3-5 years
- 6-10 years
- 11-15 years
- 16 years or more

Job Status
- Full Time
- Part Time

Credentials
- RRT
- CRT
- Physician
- CRNA
- RN
- LVN/LPN
- CPFT
- RPT
- Perinatal/Pediatric

Salary
- Less than $10,000
- $10,001-$20,000
- $20,001-$30,000
- $30,001-$40,000
- $40,000 or more

Membership Fees
Payment must accompany your application to the AARC. Fees are for 12 months. (NOTE: Renewal fees are $75.00 Active, Associate-Industrial or Associate-Physician, or Special status; $90.00 for Associate-Foreign status; and $45.00 for Student status).

<table>
<thead>
<tr>
<th>Type of Membership</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>$87.50</td>
</tr>
<tr>
<td>Associate (Industrial or Physician)</td>
<td>$87.50</td>
</tr>
<tr>
<td>Associate (Foreign)</td>
<td>$102.50</td>
</tr>
<tr>
<td>Special</td>
<td>$87.50</td>
</tr>
<tr>
<td>Student</td>
<td>$45.00</td>
</tr>
</tbody>
</table>

TOTAL

$_______

Specialty Sections
Established to recognize the specialty areas of respiratory care, these sections publish a bimonthly newsletter that focuses on issues of specific concern to that specialty. The sections also design the specialty programming at the national AARC meetings.

<table>
<thead>
<tr>
<th>Specialty Section</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Acute Care Section</td>
<td>$15.00</td>
</tr>
<tr>
<td>Education Section</td>
<td>$20.00</td>
</tr>
<tr>
<td>Perinatal-Pediatric Section</td>
<td>$15.00</td>
</tr>
<tr>
<td>Diagnostics Section</td>
<td>$15.00</td>
</tr>
<tr>
<td>Continuing Care-Rehabilitation Section</td>
<td>$15.00</td>
</tr>
<tr>
<td>Management Section</td>
<td>$20.00</td>
</tr>
<tr>
<td>Transport Section</td>
<td>$15.00</td>
</tr>
<tr>
<td>Home Care Section</td>
<td>$15.00</td>
</tr>
<tr>
<td>Subacute Care Section</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

TOTAL

$_______

GRAND TOTAL = Membership Fee plus optional sections $_______

PLEASE SIGN
I hereby apply for membership in the American Association for Respiratory Care and have enclosed my dues. If approved for membership in the AARC, I will abide by its bylaws and professional code of ethics. I authorize investigation of all statements contained herein and understand that misrepresentations or omissions of facts called for is cause for rejection or expulsion.

A yearly subscription to RESPIRATORY CARE journal and AARC Times magazine includes an allocation of $11.50 from my dues for each of these publications.

NOTE: Contributions or gifts to the AARC are not tax deductible as charitable contributions for income tax purposes. However, they may be tax deductible as ordinary and necessary business expenses subject to restrictions imposed as a result of association lobbying activities. The AARC estimates that the nondeductible portion of your dues — the portion which is allocable to lobbying — is 26%.

Signature

Date

To charge your dues, complete the following:

<table>
<thead>
<tr>
<th>Card Type</th>
<th>Card Number</th>
<th>Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mail application and appropriate fees to:
American Association for Respiratory Care • 11030 Ables Lane • Dallas, TX 75229-4593 • [972] 243-2272 • Fax [972] 484-2720
The American Association for Respiratory Care and its scientific journal, RESPIRATORY CARE, invite submission of brief abstracts related to any aspect of cardiorespiratory care. The abstracts will be reviewed, and selected authors will be invited to present posters at the OPEN FORUM during the AARC International Respiratory Congress in San Antonio, Texas, December 1-4, 2001. Accepted abstracts will be published in the October 2001 issue of RESPIRATORY CARE. Membership in the AARC is not required for participation. All accepted abstracts are automatically considered for AARC research grants.

SPECFICATIONS—READ CAREFULLY!

An abstract may report (1) an original study, (2) the evaluation of a method, device or protocol, or (3) a case or case series. Topics may be aspects of adult acute care, continuing care/rehabilitation, perinatology/pediatrics, cardiological technology, or health care delivery. The abstract may have been presented previously at a local or regional—but not national—meeting and should not have been published previously in a national journal. The abstract will be the only evidence by which the reviewers can decide whether the author should be invited to present a poster at the OPEN FORUM. Therefore, the abstract must provide all important data, findings, and conclusions. Give specific information. Do not write such general statements as “Results will be presented” or “Significance will be discussed.”

ESSENTIAL CONTENT ELEMENTS

Original study. Abstract must include (1) Background: statement of research problem, question, or hypothesis; (2) Method: description of research design and conduct in sufficient detail to permit judgment of validity; (3) Results: statement of research findings with quantitative data and statistical analysis; (4) Conclusions: interpretation of the meaning of the results.

Method, device, or protocol evaluation. Abstract must include (1) Background: identification of the method, device, or protocol and its intended function; (2) Method: description of the evaluation in sufficient detail to permit judgment of its objectivity and validity; (3) Results: findings of the evaluation; (4) Experience: summary of the author’s practical experience or a lack of experience; (5) Conclusions: interpretation of the evaluation and experience. Cost comparisons should be included where possible and appropriate.

Case report. Abstract must report a case that is uncommon or of exceptional educational value and must include (1) Introduction: relevant basic information important to understanding the case; (2) Case Summary: patient data and response, details of interventions; (3) Discussion: content should reflect results of literature review. The author(s) should have been actively involved in the case and a case-managing physician must be a co-author or must approve the report.

FORMAT AND TYPING INSTRUCTIONS

Accepted abstracts will be photographed and reduced by 40%; therefore, the size of the original text should be at least 10 points. A font like Helvetica or Times makes the clearest reproduction. The first line of the abstract should be the title in all capital letters. Title should explain content. Follow title with names of all authors (including credentials), institution(s), and location; underline presenter’s name. Type or electronically print the abstract single spaced in one paragraph on a clean sheet of paper, using margins set so that the abstract will fit into a box no bigger than 18.8 cm (7.4”) by 13.9 cm (5.5”), as shown on the reverse of this page. Insert only one letter space between sentences. Text submission on diskette is allowed but must be accompanied by a hard copy. Data may be submitted in table form, and simple figures may be included provided they fit within the space allotted. No figure, illustration, or table is to be attached to the abstract form. Provide all author information requested. Standard abbreviations may be employed without explanation; new or infrequently used abbreviations should be spelled out on first use. Any recurring phrase or expression may be abbreviated, if it is first explained. Check the abstract for (1) errors in spelling, grammar, facts, and figures; (2) clarity of language; and (3) conformance to these specifications. An abstract not prepared as requested may not be reviewed. Questions about abstract preparation may be telephoned to Linda Barcus at (972) 406-4667.

Early Deadline Allowing Revision. Authors may choose to submit abstracts early. Abstracts postmarked by May 31, 2001 will be reviewed and the authors notified by letter only to be mailed by June 15, 2001. Rejected abstracts will be accompanied by a written critique that should, in many cases, enable authors to revise their abstracts and resubmit them by the Final Deadline (July 17, 2001).

Final Deadline. The mandatory Final Deadline is July 17, 2001 (postmark). Authors will be notified of acceptance or rejection by letter only. These letters will be mailed by September 1, 2001.

Mailing Instructions. Mail (Do not fax!) 2 clear copies of the completed abstract form, diskette (if possible), and a stamped, self-addressed postcard (for notice of receipt) to:

2001 RESPIRATORY CARE OPEN FORUM
11030 Ables Lane
Dallas TX 75229-4593
<table>
<thead>
<tr>
<th>Name & Credentials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mailing Address</td>
<td></td>
</tr>
<tr>
<td>Voice Phone & Fax</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corresponding Author's Name & Credentials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mailing Address</td>
<td></td>
</tr>
<tr>
<td>Voice Phone & Fax</td>
<td></td>
</tr>
</tbody>
</table>
Manuscript Preparation Guide

RESPIRATORY CARE welcomes original manuscripts related to the science and technology of respiratory care and prepared according to the following instructions and the Uniform Requirements for Manuscripts Submitted to Biomedical Journals (available at http://www.acponline.org/journals/resource/uniform.htm). Manuscripts are reviewed by professionals who are experts in their fields. Authors are responsible for obtaining written permission to publish previously-published figures and tables from the original copyright holder. Accepted manuscripts are copyedited for clarity, conciseness, and consistency with RESPIRATORY CARE format. Before publication, authors receive page proofs for minor correction. Published papers are copyrighted by Daedalus Inc and may not be published elsewhere without permission. Editorial consultation is available at any stage of planning or writing for any submission; contact the Editorial Office.

Categories of Articles

Research Article: A report of an original investigation (a study). Must include Title Page, Abstract, Key Words, Background, Methods, Results, Discussion, Conclusions, and References. May also include Tables, Figures (if so, must include Figure Legends), Acknowledgments, and Appendices.

Review Article: A comprehensive, critical review of the literature and state-of-the-art summary of a topic that has been the subject of at least 40 published research articles. Must include: Title Page, Outline, Key Words, Introduction, Review of the Literature, Summary, and References. May also include: Tables, Figures (if so, must include Figure Legends), and Acknowledgments.

Overview: A critical review of a pertinent topic that has fewer than 40 published research articles. Same structure as Review Article.

Update: A report of subsequent developments in a topic that has been critically reviewed in RESPIRATORY CARE or elsewhere. Same structure as a Review Article.

Special Article: A pertinent paper not fitting one of the other categories. Consult with the Editor before writing or submitting such a paper.

Editorial: A paper addressing an issue in the practice or administration of respiratory care. It may present an opposing opinion, clarify a position, or bring a problem into focus.

Letter: A brief, signed communication responding to an item published in RESPIRATORY CARE or about other pertinent topics. Table, Figures, and References may be included. The letter should be marked “For Publication.”

Case Report: Report of an uncommon clinical case or a new or improved method of management or treatment. A case-managing physician must either be an author or furnish a letter approving the manuscript. Must include: Title Page, Abstract, Introduction, Case Summary, Discussion, and References. May also include: Tables, Figures (if so, must include Figure Legends), and Acknowledgments.

Point-of-View Paper: A paper expressing personal but substantiated opinions on a pertinent topic. Must include: Title Page, Abstract, and References. May also include Tables and Figures (if so, must include Figure Legends).

Drug Capsule: A miniature review about a drug or class of drugs that includes discussions of pharmacology, pharmacokinetics, or pharmacotherapy.

Graphics Corner: A brief case report discussing and illustrating waveforms for monitoring or diagnosis. Should include Questions, Answers, and Discussion sections.

Kittredge’s Corner: A brief description of the operation of respiratory care equipment. Should include information from manufacturers and editorial comments and suggestions.

PFT Corner: A brief, instructive case report including pulmonary function testing, accompanied by a review of the relevant physiology and appropriate references to the literature.

Test Your Radiologic Skill: A brief, instructive case report involving pulmonary medicine radiography and including one or more radiographs. May involve imaging techniques other than conventional chest radiography.

Review of a Book, Film, Tape, or Software: A balanced, critical review of a recent release. RESPIRATORY CARE does not accept unsolicited book reviews; please contact the Editor if you have a suggestion for a book review.

Preparing the Manuscript

Print on one side of white 8.5 ×11 inch paper, with margins of at least 1 inch on all sides. Double-space the text and number the pages. Do not include author names, author institutional affiliations, or allusions to institutional affiliations anywhere except on the title page. On the Abstract page include the title but do not include author names. Begin each of the following on a new page: Title Page, Abstract, Text, Acknowledgments, References, each Table, each Figure, and each Appendix. Use standard English in the first person and active voice. Type all headings in initial-capital letters (eg, Background, Methods, Patients, Equipment, Statistical Analysis, Results, Discussion). Center the main section headings and place second-level headings on the left margin.

RESPIRATORY CARE Manuscript Preparation Guide, Revised 12/99
Abstract. Please ensure that the abstract does not contain any facts or conclusions that do not also appear in the body text. Limit the abstract to no more than 400 words.

Key Words. Research, Review, Overview, and Special Articles require Key Words. On the Abstract or Outline page, include a list of 6 to 10 key words or two-word phrases.

References. Assign reference numbers in the order that articles are cited in your manuscript. At the end of your manuscript, list the cited works in numerical order. Abbreviate journal names as in *Index Medicus*. List all authors. The following examples show RESPIRATORY CARE's style for references.

Article in a journal carrying pagination throughout the volume:

Article in a publication that numbers each issue beginning with Page 1:

Corporate author journal article:

Article in journal supplement: (Journals differ in numbering and identifying supplements. Supply information sufficient to allow retrieval.)

Abstract in journal: (Abstracts citations are to be avoided, and those more than 3 years old should not be cited.)
Stevens DP. Scavenging ribavirin from an oxygen hood to reduce environmental exposure (abstract). Respir Care 1990;35(11):1087-1088.

Editorial in a journal:

Editorial with no author given:

Letter in journal:

Corporate author book:

Book: (For any book, specific pages should be cited whenever reference is made to specific statements or other content.)

Chapter in book with editor(s):

Paper accepted but not yet published:
Hess D. New therapies for asthma. Respir Care (year, in press).

Personal communication of unpublished data not yet accepted for publication. You must obtain written permission to cite unpublished data received via personal communication. Do not number such references, but instead make parenthetical reference in the body text of your manuscript. Example: “Recently, Jones found this treatment effective in 45 of 83 patients (Jones HI. University of the Cascades, 1999, personal communication).”

Tables. Tables should be consecutively numbered. Start each table on a separate page. Number and title the table and give each column a brief heading. Place explanations in footnotes, including all non-standard abbreviations and symbols. Key the footnotes with the following symbols, superscripted, in the table body, and in the following order: *, †, ‡, §, ¶, ‖, ′, ‐, **, ††. Do not use horizontal or vertical rules or borders. Do not submit tables as photographs, reduced in size, or on oversize paper.

Figures (illustrations). Figures include graphs, line drawings, photographs, and radiographs. Use only illustrations that clarify and augment the text. Number figures consecutively as Figure 1, Figure 2, etc. All the figures must be mentioned in the text. Every figure should have a legend (a title and/or description explaining the figure). Figure legends should appear as separate paragraphs at the end of the manuscript (after the References section), in the same computer file as the manuscript (not in a separate file, as with the tables and figures). Do not create scanned versions of figures borrowed from other publications; clear photocopies are preferable. To include figures previously published in other publications, you must obtain permission from the original copyright holder (see below). Figures must be of professional quality and a copy of the article from which the figure came should be available. If color is essential to the figure, consult the Editor for more information. In reports of animal experiments, use schematic drawings, not photographs. A letter of consent must accompany any photograph of an identifiable person. If possible, submit radiographs as prints and full-size copies of film.

Drugs. Precisely identify all drugs and chemicals used, giving generic names, doses, and methods of administration. Brand names may be given in parentheses after generic names.

Commercial Products. In the text, parenthetically identify commercial products only on first mention, giving the manufacturer’s name, city, and state or country. Example: “We performed spirom-
Permissions: You must obtain written permission to use pictures of identifiable individuals or to name individuals in the Acknowledgments section. You must obtain written permission from the original copyright holder to use figures and tables from other publications. Copies of all applicable permissions must be on file at RESPIRATORY CARE before a manuscript goes to press. Copyright is not often held by the journal or book in which the figure or table originally appeared and applies to the creativity, style, and form in which the facts/data are presented to the reader; the facts themselves are not copyright-protectable. Therefore, if you were asking permission to reproduce a table or figure directly from a journal or book, or with minor adaptations, permission would be necessary. However, if you intend to extract some data from text or illustrations and present them in a new form, permission would not be needed. Simply cite the source of the data using the following statement: "Figure adapted from data published in ..."

Ethics. When reporting experiments on human subjects, indicate that procedures were conducted in accordance with the ethical standards of the World Medical Association Declaration of Helsinki (see Respir Care 1997;42(6):635-636) or of the institution's committee on human experimentation. State that informed consent was obtained. Do not use patient's names, initials, or hospital numbers in text or illustrations. When reporting experiments on animals, indicate that the institution's policy, a national guideline, or a law on the care and use of laboratory animals was followed.

Statistics. Identify the statistical tests used in analyzing the data and give the prospectively determined level of significance in the Methods section. Report actual p-values in the Results section. Cite only textbook and published article references to support choices of tests. As with commercial products (see above), parenthetically identify any general-use or commercial computer programs used.

Units of Measurement. Express measurements of length, height, weight, and volume in metric units appropriately abbreviated; temperatures in degrees Celsius; and blood pressures in millimeters of mercury (mm Hg). Report hematologic and clinical-chemistry measurements in conventional metric and in SI (Système Internationale) units (units and conversion factors listed at Respir Care 1997;42(6):640). Show gas pressures (including blood gas tensions) in millimeters of mercury (mm Hg).

Conflict of Interest. On the cover page, authors must disclose any liaison or financial arrangement they have with a manufacturer or distributor whose product is addressed in the manuscript or with the manufacturer or distributor of a competing product. Such arrangements do not disqualify a paper from consideration and are not disclosed to reviewers. Reviewers are screened for possible conflict of interest.

Abbreviations and Symbols. Use standard abbreviations and symbols, listed at Respir Care 1997;42(6):637-642. Do not create new abbreviations. Do not use abbreviations in the title, in section headings, and do not use unusual abbreviations in the abstract. Use an abbreviation only if the term occurs 3 or more times in the paper. Define all abbreviations (ie, write out the full term on first mention, followed by the abbreviation in parentheses) and thereafter use only the abbreviation. Standard units of measurement and scientific terms can be abbreviated without explanation (eg, L/min, mm Hg, pH, O2). Please use the following forms: cmH2O (not cm H2O), l (not lpm), 1 L/minute (not L/minute), mL (not ml), mm Hg (not mm Hg), pH (not Ph or PHi), p > .001 (not p < .001), s (not sec), S(t) (arterial oxygen saturation measured via pulse-oximetry).

Prior and Duplicate Publication. In general, do not submit work that has been published or accepted elsewhere, though in special instances the Editor may consider such material if the original publisher grants permission. Please consult the Editor before submitting such work.

Authorship. All persons listed as authors should have participated in the reported work and in the shaping of the manuscript; all must have proofread the submitted manuscript, and all should be able to publicly discuss and defend the paper's content. A paper of corporate authorship must specify the key persons responsible for the article. Attribution of authorship is not based solely on solicitation of funding, collection or analysis of data, provision of advice, or similar services. Persons who provide such ancillary services may be recognized in an Acknowledgments section.

Reviewers: Please supply the names, credentials, affiliations, addresses, and phone/fax numbers of 3 professionals whom you consider expert on the topic of your paper. Your manuscript may be sent to one or more of them for blind peer review.

Submitting the Manuscript
Submit three printed copies and one (3.5-inch) computer diskette. The printed copies should each include photocopies of all of the figures, tables, and appendixes. On the diskette, the manuscript should be in one file and the tables in a separate file. If soft copies of the figures are available, they should also be in a separate file. However, do not create scanned versions of figures borrowed from other publications; clear photocopies are preferable. Include the completed Cover Letter and Checklist (see next page) and permission letters. Mail to RESPIRATORY CARE, 600 Ninth Avenue, Suite 702, Seattle WA 98104. Do not fax manuscripts. Receipt will be acknowledged.

RESPIRATORY CARE
Editorial Office:
600 Ninth Avenue, Suite 702
Seattle WA 98104
(206) 223-0558 (voice)
(206) 223-0563 (fax)
rcjournal@aarc.org
rcjkk@oz.net

Respiratory Care: Manuscript Preparation Guide. Revised 12/99
Title of Paper: __

Publication Category: __

Corresponding Author: ___ Phone: _____ FAX: _____

Mailing Address: __

Reprints: □ Yes □ No E-mail Address: ___

"We, the undersigned, have all participated in the work reported, proofread the accompanying manuscript, and approve its submission for publication." Please print and include credentials, title, institution, academic appointments, city and state. If more than 4 authors, please use another copy of this form."

*First Author: __

Author Signature/Date

*Second Author: __

Author Signature/Date

*Third Author: __

Author Signature/Date

*Fourth Author: __

Author Signature/Date

Has this research been presented in any public forum? □ Yes □ No

If yes, where, when and by whom? __

Has this research received any awards? □ Yes □ No

If yes, please describe. __

Has this research received any grants or other support, financial or material? □ Yes □ No

If yes, please describe. __

Do any of the authors of this manuscript have a financial interest in (or a commercial or consulting relationship to) any of the products or manufacturers mentioned in this paper or any competing products or manufacturers? □ Yes □ No

If yes, please describe. __

☐ Have you enclosed a copy of the manuscript on diskette?
☐ Is double-spacing used throughout entire manuscript?
☐ Are all pages numbered in upper-right corners?
☐ Are all references, figures, and tables cited in the text?
☐ Has the accuracy of the references been checked, and are they correctly formatted?
☐ Have SI values been provided?
☐ Has all arithmetic been checked?
☐ Have generic names of drugs been provided?
☐ Have necessary written permissions been provided?
☐ Have authors' names been omitted from text and figure labels?
☐ Have copies of 'in press' references been provided?
☐ Has the manuscript been proofread by all the authors?
☐ Have the manufacturers and their locations been provided for all devices and equipment used?
Digital Handheld Pulse Oximeter. Nonin Medical Inc has released the newest addition to its digital pulse oximeter product line—the PalmSAT™ 2500. Nonin describes the new device as lightweight and versatile and says that it is designed to accurately assess blood oxygen saturation and pulse rate. According to the company, the PalmSAT 2500 is appropriate for use in multiple care settings and offers 72 hours of memory standard, ergonomic design, simple operation, and convenient battery access. For more information from Nonin Medical Inc, circle number 191 on the reader service card in this issue, or send your request electronically via “Advertisers Online” at http://www.aarc.org/buyers_guide/

Ventilatory Support System. Respironics Inc has released its new BiPAP™ Synchrony™ Ventilatory Support System. The company says this newest member of its BiPAP line offers providers the option of using either a limited-feature ventilator platform (BiPAP Synchrony S) or an advanced platform (BiPAP Synchrony ST) with additional modes of operation. Respironics says the device is lightweight at less than 6 pounds and that it offers patient comfort features such as Digital Auto-Trak Sensitivity™, which automatically adjusts to a patient’s breathing pattern and mask leaks, and a ventilator ramp function that allows pressure to gradually be introduced to the patient. For more information from Respironics Inc, circle number 192 on the reader service card in this issue, or send your request electronically via “Advertisers Online” at http://www.aarc.org/buyers_guide/

Spriometer/Pulse Oximeter Combination. QRS Diagnostic received 510(k) clearance from the Food and Drug Administration to market what the company calls the world’s first combination spirometer/pulse oximeter. QRS says the SpirOxCard™, available since late 2000, provides two sophisticated diagnostic tests with only one device, noting also that it is small enough to fit in a coat pocket and that it is compatible with most Windows® CE handheld computers. The company also says the new device, along with the company’s Office Medic software, will cost significantly less than competitive, stand-alone systems. For more information from QRS Diagnostic circle number 193 on the reader service card in this issue, or send your request electronically via “Advertisers Online” at http://www.aarc.org/buyers_guide/

Portable Blood Gas Analyzer. Radiometer has introduced what they call the fastest portable blood gas analyzer in the world. The company says the new ABL77 is designed specifically for point-of-care testing making it easy to measure important acute parameters in blood samples. According to Radiometer the device is virtually maintenance free, is always ready to use, and requires no cassette or analyzer preparation before a sample can be measured. The company says the ABL77 measures pH, pO2, pCO2, eCa++, eNa+, eK+ and Hct using 85µL of whole blood. For more information from Radiometer, circle number 194 on the reader service card in this issue, or send your request electronically via “Advertisers Online” at http://www.aarc.org/buyers_guide/
<table>
<thead>
<tr>
<th>Date</th>
<th>AARC & Affiliates Programs</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 13</td>
<td>Professor’s Rounds 2001 Live Videoconference, Program 1</td>
<td>AARC, (972) 243-2272</td>
</tr>
<tr>
<td>March 14–16</td>
<td>22nd Annual Tahoe Conference, Lake Tahoe, CA</td>
<td>CSRC Greater Bay Area Chapter, (925) 866-6643; www.cssrc.org</td>
</tr>
<tr>
<td>March 27</td>
<td>Professor’s Rounds 2001 Live Videoconference, Program 2</td>
<td>AARC, (972) 243-2272</td>
</tr>
<tr>
<td>April 4–5</td>
<td>USRC 2001 Conference; Ogden, UT</td>
<td>Utah Society for Respiratory Care, peberel@weber.edu</td>
</tr>
<tr>
<td>April 19–20</td>
<td>PSRC 4th Annual Eastern Regional Conference and Exhibition,</td>
<td>Pennsylvania Society for Respiratory Care, Ann Cusano, (215) 646-7300, ext. 428, cusano.a@gmc.edu</td>
</tr>
<tr>
<td></td>
<td>King of Prussia, PA</td>
<td></td>
</tr>
<tr>
<td>July 21–23</td>
<td>Management and Education Sections, Summer Forum; Naples, FL</td>
<td>AARC, (972) 243-2272, clay@aarc.org</td>
</tr>
<tr>
<td>Dec 1–4</td>
<td>47th International Respiratory Congress; San Antonio, TX</td>
<td>AARC, (972) 243-2272, clay@aarc.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Other Meetings</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 16–17</td>
<td>UT Health Science Center and Wilford Hall USAF Medical Center’s 6th Annual Respiratory Care Symposium; San Antonio, TX</td>
<td>UTHSCSA, Dept. of Respiratory Care, (210) 567-8850</td>
</tr>
<tr>
<td>May 1</td>
<td>Spirometry Update Refresher Course, Cincinnati, OH</td>
<td>Dr. Roy T. McKay, (513) 558-1234 or www.drmckay.com</td>
</tr>
<tr>
<td>May 8–11</td>
<td>All Children’s Hospital: Neonatal/Pediatric Transport Conference, Clearwater Beach, FL</td>
<td>Connie Spadaccino, (800) 456-4543, ext. 4240</td>
</tr>
<tr>
<td>May 12–14</td>
<td>Spring Sleep Seminar 2001, Branson, MO</td>
<td>Bill Rivers or Melinda Trimble, (501) 713-1272</td>
</tr>
</tbody>
</table>

Call for Abstracts

2001 Respiratory Care Open Forum

Early Deadline: May 31, 2001
Final Deadline: July 17, 2001
Scheduled Professor's Rounds 2001

Program #1 Taking the Mystery Out of Ventilator Weaning for Children—Peter Bettis BS RRT FAARC
Host Richard D Branson BA RRT FAARC—Video March 13 Audio April 10

Program #2 Pulmonary Rehabilitation: Standard Care for Chronic Lung Disease Patients—Trina Linberg BS RRT; Host Thomas J Kallstrom RRT FAARC—Video March 27 Audio April 17

Program #3 Noninvasive Ventilation: The Latest Word—Dean R Hess PhD RRT FAARC; Host Richard D Branson BA RRT FAARC—Video April 24 Audio May 29

Program #4 Patient Education for the Asthmatic—Tracey Mitchell RRT; Host Thomas J Kallstrom RRT FAARC—Video May 22 Audio June 19

Program #5 ARDS: The Disease and Its Management—Leonard D Hudson MD; Host David J Pierson MD FAARC—Video June 26 Audio July 17

Program #7 Invasive Ventilation: The Latest Word—Richard H Kallet MS RRT; Host Richard D Branson BA RRT FAARC—Video September 25 Audio October 16

Program #8 Test Your Lungs—Know Your Numbers—Prevent Emphysema—Thomas L Petty MD FAARC; Host David J Pierson MD FAARC—Video October 23 Audio November 20

Helpful Web Sites

American Association for Respiratory Care
http://www.aarc.org
— Current job listings
— American Respiratory Care Foundation fellowships, grants, & awards
— Clinical Practice Guidelines

National Board for Respiratory Care
http://www.nbrc.org

RESPIRATORY CARE online
http://www.rcjournal.com
— Subject and Author Indexes
— Contact the editorial staff
— OPEN FORUM; submit your abstract online

Asthma Management
Model System
http://www.nhlbi.nih.gov

Keys to Professional Excellence
http://www.aarc.org/keys/

Committee on Accreditation for Respiratory Care
http://www.coarc.com

The National Board for Respiratory Care—Examination Fees for 2001

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT</td>
<td>$190 (new applicant) $150 (reapplicant)</td>
</tr>
<tr>
<td>Perinatal/Pediatric</td>
<td>$250 (new applicant) $220 (reapplicant)</td>
</tr>
<tr>
<td>CPFT</td>
<td>$200 (new applicant) $170 (reapplicant)</td>
</tr>
<tr>
<td>RPFT</td>
<td>$250 (new applicant) $220 (reapplicant)</td>
</tr>
<tr>
<td>RRT (Written & CSE)</td>
<td>$190 (new) $150 (reapplicant) written only</td>
</tr>
<tr>
<td></td>
<td>$200 (new and reapplicant) CSE only</td>
</tr>
<tr>
<td></td>
<td>$390 (new) $350 (reapplicant) both</td>
</tr>
</tbody>
</table>

For information about other services or fees, write to the National Board for Respiratory Care, 8310 N. Central Expressway, Lenexa KS 66214, or call (913) 599-4200, FAX (913) 541-0186, or e-mail nbrc-info@nbrc.org
Authors in This Issue

Adams, Alexander B .. 177
Barnes, Thomas A .. 200
Blanch, Lluis L ... 158
Cardell, Jane .. 202
Delgado, Edgar ... 185
Gillette, Michael A .. 118, 119, 130
Hess, Dean R .. 198
Hoffman, Leslie A .. 185
Kacmarek, Robert M .. 167
Karmy-Jones, Riyad .. 265
Kirmse, Max ... 201
Machtyrue, Neil R ... 118, 193, 198
Nahum, Avi .. 149
Naylor, John K .. 200
Pinisky, Michael R .. 185
Tasota, Frederick J ... 185

Advertisers in This Issue

To advertise in RESPIRATORY CARE, contact Tim Goldsburry, 380 Tequesta Drive, Tequesta FL 33469 at (561) 745-6793, Fax (561) 745-6795, e-mail: goldsburry@aarc.org, for rates and media kits. For recruitment/classified advertising contact Beth Binkley, Marketing Assistant for RESPIRATORY CARE, at (972) 243-2272.

<table>
<thead>
<tr>
<th>Company</th>
<th>Product</th>
<th>Circle #</th>
<th>Phone</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHD Healthcare</td>
<td>ACE Aerosol Cloud Enhancer</td>
<td>102</td>
<td>800-847-8000</td>
<td>C4</td>
</tr>
<tr>
<td>Dräger Medical</td>
<td>Ventilators</td>
<td>119</td>
<td>800-437-2457</td>
<td>C2</td>
</tr>
<tr>
<td>Hans Rudolph</td>
<td>Research Pneumotach System</td>
<td>120</td>
<td>800-456-6695</td>
<td>97</td>
</tr>
<tr>
<td>Hudson RCI</td>
<td>RCI Pocket Spacer</td>
<td>112</td>
<td>800-848-3766</td>
<td>90</td>
</tr>
<tr>
<td>Instrumentation Industries</td>
<td>MDI Adapters</td>
<td>117</td>
<td>800-633-8577</td>
<td>97</td>
</tr>
<tr>
<td>Mobay Inc</td>
<td>Books</td>
<td>110</td>
<td>800-545-2522</td>
<td>113</td>
</tr>
<tr>
<td>Praxair Inc</td>
<td>Portable Medical Oxygen Unit</td>
<td>122</td>
<td>800-299-7977</td>
<td>92</td>
</tr>
<tr>
<td>Pulmonary Systems</td>
<td>LTV Series Ventilators</td>
<td>135</td>
<td>800-754-1914</td>
<td>C3</td>
</tr>
<tr>
<td>ResMed Corp</td>
<td>Mirage Mask</td>
<td>108</td>
<td>800-424-0737</td>
<td>94</td>
</tr>
<tr>
<td>Respironics Inc</td>
<td>Ventilation</td>
<td>130</td>
<td>800-345-6443</td>
<td>105</td>
</tr>
<tr>
<td>St Alphonsus Regional Medical Ctr</td>
<td>Recruitment</td>
<td>116</td>
<td>208-367-2106</td>
<td>103</td>
</tr>
</tbody>
</table>

COPYRIGHT INFORMATION. RESPIRATORY CARE is copyrighted by Daedalus Enterprises Inc. Reproduction in whole or in part without the express written permission of Daedalus Enterprises Inc is prohibited. Permission to photocopy a single article in this Journal for noncommercial purposes of scientific or educational advancement is granted. Permission for multiple photocopies and copies for commercial purposes must be requested in writing, by e-mail (tjournal@aarc.org), or telephone and approved by RESPIRATORY CARE. Anyone may, without permission, quote up to 500 words of material in this journal provided the quotation is for noncommercial use and RESPIRATORY CARE is credited. Longer quotations require written approval by the author and publisher. Single reprints are available only from the authors. Reprints for commercial use may be purchased from Daedalus Enterprises Inc. For more information and prices call (972) 243-2272.

DISCLAIMER. The opinions expressed in any article or editorial are those of the author and do not necessarily reflect the views of the Editors, the American Association for Respiratory Care (AARC), or Daedalus Enterprises Inc. Neither are the Editors, the AARC, or the Publisher responsible for the consequences of the clinical applications or use of any methods or devices described in any article or advertisement.

SUBSCRIPTION RATES. Individual subscription rates are $75 per year (12 issues), $145 for 2 years, and $215 for 3 years in the US and Puerto Rico. Rates are $90 per year, $175 for 2 years, and $260 for 3 years in all other countries (add $94 per year for air mail). Single copies when available cost $10; add $5 for air mail postage to overseas countries. Checks should be made payable to RESPIRATORY CARE and sent to the subscription office at 11030 Ables Lane, Dallas, TX 75229-4593, or call (972) 243-2272.

SUBSCRIPTION RATES FOR ASSOCIATIONS. Basic annual subscriptions are offered to members of associations according to their membership enrollment: 101-500 members = $16.25/year (each); 501-1,500 = $15.75/year (each); 1,500-10,000 = $14.75/year (each); more than 10,000 = $13.75/year (each). For information, contact Ray Masterrer at (972) 243-2272.

CHANGE OF ADDRESS. Notify the AARC at (972) 243-2277 as soon as possible of any change in address. Note the subscription number (from the mailing label) and your name, old address, and new address. Allow 6 weeks for the change. To avoid charges for replacement copies of missed issues, requests must be made within 60 days in the US and 90 days in other countries.

MANUSCRIPTS. The Journal publishes clinical studies, method/device evaluations, reviews, and other materials related to cardiopulmonary medicine and research. Manuscripts may be submitted to the Editorial Office, RESPIRATORY CARE, 600 North Avenue, Suite 702, Seattle WA 98104. Instructions for authors are printed in every issue.
Profile In Courage

CHRISTOPHER REEVE

Most of us know Christopher Reeve.

Subscription Form

RESPIRATORY CARE is the most highly regarded peer-reviewed scientific publication for the Clinician participating in the evaluation and care of patients with cardiopulmonary problems. Please print. Incomplete forms will not be processed. For faster service, fax to (972) 484-2720.

Enclosed is a check in the amount of $.

Charge to my:
- Mastercard
- Visa
- Bill Me

Receive FREE information on the products and services mentioned in this issue, by circling the corresponding advertiser's number. Fill in your name and address and mail this postage-paid card. Information will be sent directly to you from the manufacturer. Incomplete forms will not be processed.

FREE

Product Information

Receive FREE information on the products and services mentioned in this issue, by circling the corresponding advertiser's number. Fill in your name and address and mail this postage-paid card. Information will be sent directly to you from the manufacturer. Incomplete forms will not be processed.

Mail Today

OR FOR FASTER SERVICE

FAX TO

(609) 786-4415

DON'T MISS A SINGLE ISSUE!

RESPIRATORY CARE

powerful features
and unique
improved quality of

make a difference
Authors in This Issue

Adams, Alexander B .. 177
Barnes, Thomas A ... 200
Blanch, Lluis L .. 158
Cardell, Jane .. 202
Delgado, Edgar ... 185
Gillette, Michael A ... 119, 130
Hess, Dean R .. 185
Hoffman, Leslie A ... 185
Kacmarek, Robert M ... 167
Karmy-Jones, Riyad ... 203
Kirmse, Max ... 201
MacIntyre, Neil R ... 118, 193, 198
Nahum, Avi ... 149
Naylor, John K .. 200
Pinsky, Michael R ... 185
Tasota, Frederick J ... 185

Adverties in This Issue

Company
DHD Healthcare
Drager Medical
Hans Rudolph
Hudson RCI
Instrumentation Indu
Mosby Inc
Praxair Inc
Pulmonary Systems
ResMed Corp
Respironics Inc
St Alphonsus Region

COPYRIGHT INFORMATION
Daedalus Enterprises Inc.
written permission of D:
photocopy a single artis
scientific or educational
photocopies and copies i
ing, via e-mail (rejourna
RATORY CARE. Any original
material in this journal p
Respiratory Care i
掲載 by the author and
authors. Reprints for cor
prises Inc. For more i

DISCLAIMER. The op
the author and do m
American Association 1
prises Inc. Neither are t
for the consequences of t
cases described in any a

SUBSCRIPTION RATES
(12 issues). $145 for 2
Rates are $92 per y
countries (add $94 per y

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 2480 Dallas, TX
POSTAGE WILL BE PAID BY ADDRESSEE

AARC Subscriptions
ATTN: Beth Binkley
PO BOX 29686
Dallas TX 75229-9691

AARC Publications
PO BOX 11605
Riverton NJ 08076-7205
Profile In Courage

CHRISTOPHER REEVE

Most of us know Christopher Reeve and the tragic accident that occurred several years ago. But did you know that Mr. Reeve is determined to walk again? Mr. Reeve undergoes rigorous physical therapy as part of achieving this goal. With the assistance of his LTV Ventilator, Mr. Reeve is able to perform the therapy that will help him realize his objective. The LTV Ventilator not only offers him refined features such as Flow Triggering, Pressure Support and Variable Breath Termination, but it enables him to breathe autonomically for extended periods of time which he considers a crucial part of his preparation for recovery. Today, Christopher Reeve is not just exercising; he's making a dream become a reality. After all, isn't that what true quality of life is all about?

Profile In Possibilities

LTV™ Series Ventilators

Redefining true portability, Pulmonetic Systems' LTV Series Ventilators offer powerful features with uncompromising performance. Their sophisticated pneumatic design and unique miniaturization technology provide patients with maximum mobility and an improved quality of life. Contact us today to learn more about how the LTV Series Ventilators can make a difference in the life of someone you know.

Pulmonetic Systems
Innovations For Life

Toll Free: (800) 754-1914
www.pulmonetic.com

930 S. Mt. Vernon Ave. Suite 100 • Colton, CA 92324 USA • Phone: (909) 783-2280 • Fax: (909) 783-2975

Circle 135 on product info card
Now you need it. Now you don't.

Introducing the ACE Aerosol Cloud Enhancer with exclusive, detachable mask.

The universal ACE spacer now gives you the option of a detachable mask for even greater versatility in MDI delivery!

ACE eliminates the need to stock multiple MDI spacers. In addition to using ACE to deliver aerosolized medications through a mask, you can also use it in a vent circuit, in conjunction with an endotracheal airway, connected to a resuscitation bag, and with a mouthpiece for routine oral therapy. No other spacer lets you deliver relief in more applications!

The ACE detachable mask is available in three sizes (sold separately), and is easy for patients to remove and clean. For more information on the ACE Aerosol Cloud Enhancer with detachable mask, or for a free catalog of DHD quality respiratory products, call toll-free today at 1-800-847-8000.

DHD Healthcare
Innovations for respiratory care
DHD Healthcare Corporation
One Madison Street, Wappinger, NY 12590 USA - 800-847-8000 (315) 365-2340
Customer Service FAX 315-365-8034 www.dhd.com

Circle 102 on product info card