Call for 1997 OPEN FORUM Abstracts
Early Deadline March 17, 1997

- VSV in Infants & Children
- Two Methods for Securing Endotracheal Tubes in Neonates
- Teaching Features
 Drug Capsule
 Graphics Corner
 TYRS
No matter who.
No matter where.
No matter when.

From the routine to the critically ill, from neonatal to adult, we have the ventilators to support all your patients.

With the addition of the Infant Star® and Adult Star line of ventilators, our family of ventilatory solutions has grown as diverse as the patients you treat.

Which equates to world-class support for you. Not just in range of products, but in the industry's largest service and support network — trained clinical, technical, and educational specialists to help you in the field and over the phone. We'd like to tell you more about how we'll satisfy all your ventilator needs. Contact your Nellcor Puritan Bennett sales representative today, or call 1-800-NELLCOR.

Nellcor Puritan Bennett ventilators. When your patient presents a challenge, we'll present a solution. No matter what.

1-800-NELLCOR

7,200, 7250, and Star are trademarks of Nellcor Puritan Bennett Inc. © 1996 Nellcor Puritan Bennett Inc. All rights reserved. http://www.nellcorpb.com VFRM22540 (9/96)

Circle 132 on reader service card
Formulas for Success

Discussion of Ideas

Learning

Workshops

Summer Forum

Join Us in Phoenix, AZ
July 25-27, 1997

Look for program and registration information in the April 1997 issue of AARC Times.
American Association for Respiratory Care
(972) 243-2272
Novametrix Introduces, “Capnography to Go” with the TIDAL WAVE Hand-Held Capnograph.

TIDAL WAVE is the first monitor to offer the powerful performance of a bedside capnograph in a hand-held package. The TIDAL WAVE utilizes the CAPNOSTAT® CO₂ sensor which incorporates our leading edge, solid-state mainstream technology, and is designed to withstand the most harsh clinical environments. The CO₂ waveform provides the most complete picture of your patient's airway status and allows critical airway management to be performed quickly and with added confidence.

To learn more about the TIDAL WAVE, call us today at (800) 243-3444 or (203) 265-7701. Visit us on the WEB at http://www.novametrix.com
Contents ...

ORIGINAL CONTRIBUTIONS

281 Volume Support Ventilation in Infants and Children: Analysis of a Case Series
 by Heather T Keenan and Lynn D Martin—Seattle, Washington

288 Comparison of Two Methods for Securing the Endotracheal Tube in Neonates
 by Teresa A Voiko and Robert L Chaburn—Cleveland, Ohio

DRUG CAPSULE

292 Bronchodilator Properties of Ketamine
 by Hugh S Mathewson and Thomas A Davis—Kansas City, Kansas

GRAPHICS CORNER

294 A Patient in Status Asthmaticus: What Does the Waveform Confirm?
 by Robert Harwood, Lynda Thomas Goodfellow, DiAnn Larson, and Robert Aranson—Atlanta, Georgia

TEST YOUR RADIOLOGIC SKILL

300 Progressive Respiratory Failure, Toxic Delirium, and Shock in a 47-Year-Old Man
 by Digpal Chanlian and Julie Johnson—Leavenworth, Kansas

BOOKS, FILMS, TAPES, & SOFTWARE

306 Amyotrophic Lateral Sclerosis: Diagnosis and Management for the Clinician
 Reviewed by John R Bach—Newark, New Jersey

307 Research Design: Qualitative and Quantitative Approaches
 Reviewed by Shelley C Mishoe—Augusta, Georgia

308 Life Support: A Family Clinical Guide
 Reviewed by Keith R Moom—Galveston, Texas

CLASSIC REPRINT

309 Retrospectroscope: Premature Science and Immature Lungs—Part 1: Some Premature Discoveries
 by Julius H Comroe Jr
The Uni-Vent™ Eagle™
Portable Ventilation System
Incredibly Small, Incredibly Light, Incredibly Powerful!

The only thing it doesn't have...

...is competition

Unlike anything you've ever seen before, the Eagle™ is an engineering marvel that adds to the Uni-Vent™ list-of-accomplishments!

Imagine a self contained, battery-powered portable ventilator/compressor/blender weighing just over 12-pounds, with a graphics display, powerful monitors and alarms, an interactive demo/teaching mode, and fast startup sequence that allows you to begin operation in as few as three steps. See one now!

IMPACT Instrumentation, Inc.
27 Fairfield Place, West Caldwell, NJ 07006
Tel. 201.882.1212 Fax. 201.882.4993

Circle 97 on reader service card
... Contents

March 1997
Volume 42, Number 3

IN THIS ISSUE

273 AARC Membership Application
264 Abstracts from Other Journals
336 Advertisers Index & Help Lines
336 Author Index
325 Calendar of Events
323 Call for Open Forum Abstracts
330 Manuscript Preparation Guide
317 MedWatch
328 New Products & Services
334 Notices

RESPIRATORY CARE (ISSN 0020-1324) is published monthly by Daedalus Enterprises Inc., at 11030 Ables Lane, Dallas TX 75229-4593, for the American Association for Respiratory Care. One volume is published per year beginning each January. Subscription rates are $65 per year in the US, $80 in all other countries (for airmail, add $8). The contents of the Journal are indexed in Hospital and Health Administration Index, Cumulative Index to Nursing and Allied Health Literature, Excerpta Medica, and RMedex Library Edition. Abridged versions of RESPIRATORY CARE are also published in Italian and Japanese, with permission from Daedalus Enterprises Inc. Periodicals postage paid at Dallas, TX. POSTMASTER: Send address changes to RESPIRATORY CARE, Membership Office, Daedalus Enterprises Inc., 11030 Ables Lane, Dallas TX 75229-4593

Printed in the United States of America

Copyright © 1997, by Daedalus Enterprises Inc.
“Professor’s Rounds” conferences are unique opportunities for you and your staff to learn from some of the most skilled, knowledgeable, and successful people in health care. Leaders. People who know what is happening in health care—Sheryl Haneckow, Thomas Kallstrom, Barbara Wilson, Gretchen Lawrence, Jon Nilsestuen, and Sam Giardino.

Literally thousands of health care professionals will view these programs and earn continuing education credit. You’ll learn new tactics and strategies for the new era of health care. Subscribing to “Professor’s Rounds” will save you months of reading, listening, diggin, comparing, and learning about the new health care and technologies and procedures. Register now for an exciting and informative journey.

Videotape Teleconferences

Everyone in your facility can earn one hour of continuing education credit for each “Professor’s Rounds” program. You are provided with a 90-minute videotape to view prior to a live 30-minute telephone question-and-answer session with the expert. The only equipment required is a VHS videotape player, a television monitor, and a telephone/speaker phone. The registration fee for the Video Teleconference does not include the Live Television Videoconference.

Live Television Videoconferences

You and each member of your staff can earn one hour of continuing education credit for each “Professor’s Rounds” program without leaving your facility. Each live 90-minute program is interactive to give you the opportunity to ask questions and discuss the issues further. Earn continuing education credit by viewing the program live or by tape delay. You will need satellite reception capabilities (KU analog or C Band) and a viewing room with a video monitor and telephone. The registration fee for the Live Television Videoconference does not include the Video Teleconference.

<table>
<thead>
<tr>
<th>Videotape Teleconferences</th>
<th>Live Television Videoconferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Mechanical Ventilation: Managing Tubes and Aerosols</td>
<td>I. Mechanical Ventilation: Managing Tubes and Aerosols</td>
</tr>
<tr>
<td>April 15, 12:30-1 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
<td>March 18, 12:30-2 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
</tr>
<tr>
<td>Approved for One Hour of Continuing Education Credit</td>
<td>Approved for One Hour of Continuing Education Credit</td>
</tr>
<tr>
<td>II. Waveform Analysis and Interpretation</td>
<td>II. Waveform Analysis and Interpretation</td>
</tr>
<tr>
<td>May 21, 12:30-1 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
<td>April 29, 12:30-2 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
</tr>
<tr>
<td>Approved for One Hour of Continuing Education Credit</td>
<td>Pacific Time Approved for One Hour of Continuing Education Credit</td>
</tr>
<tr>
<td>III. JCAHO Problematic Areas for Respiratory Care Services</td>
<td>III. JCAHO Problematic Areas for Respiratory Care Services</td>
</tr>
<tr>
<td>June 9, 12:30-1 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
<td>May 20, 12:30-2 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
</tr>
<tr>
<td>Approved for One Hour of Continuing Education Credit</td>
<td>Approved for One Hour of Continuing Education Credit</td>
</tr>
<tr>
<td>IV. Asthma Disease Management:</td>
<td>IV. Asthma Disease Management:</td>
</tr>
<tr>
<td>Using the Revised NAEPP Guidelines in Practice</td>
<td>Using the Revised NAEPP Guidelines in Practice</td>
</tr>
<tr>
<td>July 16, 12:30-1 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
<td>July 24, 12:30-2 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
</tr>
<tr>
<td>Approved for One Hour of Continuing Education Credit</td>
<td>Approved for One Hour of Continuing Education Credit</td>
</tr>
<tr>
<td>V. Initial Treatment for the Pediatric Patient in Respiratory Distress</td>
<td>V. Initial Treatment for the Pediatric Patient in Respiratory Distress</td>
</tr>
<tr>
<td>August 20, 12:30-1 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
<td>July 15, 12:30-2 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
</tr>
<tr>
<td>Approved for One Hour of Continuing Education Credit</td>
<td>Approved for One Hour of Continuing Education Credit</td>
</tr>
<tr>
<td>VI. Nitric Oxides: Issues and Answers</td>
<td>VI. Nitric Oxides: Issues and Answers</td>
</tr>
<tr>
<td>September 8, 12:30-1 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
<td>August 26, 12:30-2 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
</tr>
<tr>
<td>Approved for One Hour of Continuing Education Credit</td>
<td>Approved for One Hour of Continuing Education Credit</td>
</tr>
<tr>
<td>Supported in part by an educational grant from Siemen Instruments Inc. / Pulmonox Medical Corporation</td>
<td></td>
</tr>
<tr>
<td>VII. Reimbursement: Solving the Puzzle</td>
<td>VII. Reimbursement: Solving the Puzzle</td>
</tr>
<tr>
<td>November 3, 12:30-1 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
<td>October 14, 12:30-2 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
</tr>
<tr>
<td>Approved for One Hour of Continuing Education Credit</td>
<td>Approved for One Hour of Continuing Education Credit</td>
</tr>
<tr>
<td>VIII. Marketing Services to Managed Care Organizations:</td>
<td>VIII. Marketing Services to Managed Care Organizations:</td>
</tr>
<tr>
<td>Not Just for Managers</td>
<td>Not Just for Managers</td>
</tr>
<tr>
<td>December 1, 12:30-1 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
<td>November 11, 12:30-2 p.m. Eastern Time, 9:30 a.m. Pacific Time</td>
</tr>
<tr>
<td>Approved for One Hour of Continuing Education Credit</td>
<td>Approved for One Hour of Continuing Education Credit</td>
</tr>
</tbody>
</table>

Videoconferences

Videoconferences of the programs will be available after each Live Television Videoconference. Sites purchasing videotapes only do not earn continuing education credit. To earn continuing education credit, participants must view the program at a site registered for the Live Television Videoconference or the Video Teleconference. If you have any questions, please call (800) 243-2272.

Accreditation

Each staff member completing CRCE requirements earns one continuing education credit for participating in each program in the 1998-1999 cycle.

Requirements

Live Television Videoconference—You will need satellite reception capabilities, a viewing room, a television monitor, and a telephone. Registration fee is for the live television broadcast only. It does not include both the Live Television Videoconference and Videotape Teleconference.

Videotape Teleconference—A videotape of the programs is provided to registered Videotape Teleconference sites after the live program. The only equipment required is a VHS videotape player, a television monitor, and a telephone/speaker phone. Registration fee is for the Videotape Teleconference only. It does not include both the Videotape Teleconference and Live Television Videoconference.

Videotapes Only—Videotapes of the program will be available after the live television broadcast. Note: Purchasers of videotapes only are not eligible for continuing education credit.
1997 "Professor's Rounds" Registration Form

To register, please complete the form below. Make checks payable to the AARC. Mail registration form to: American Association for Respiratory Care, AARC Videoconferences, 11030 Ables Lane, Dallas, Texas 75229-4593. Purchase orders and credit card orders may be faxed to (972) 484-2720 or (972) 484-6010.

Method of Payment: □ Check enclosed in the amount of $______________ □ Purchase Order Number ____________

Bill my credit card: □ Visa □ MasterCard

Card Number ___________________________ Expiration Date _____ Signature X ____________

AARC Member Number ___________________________ Name ___________________________

Institution ___________________________ Title ___________________________

Billing Address ___________________________

City/State/Zip ___________________________ Telephone Number (_____) __________________

Send Program Materials to (if different from above):
Please provide street address for UPS shipments. No Post Office boxes.

Name ___________________________ Title ___________________________

Institution ___________________________

Street Address ___________________________

City/State/Zip ___________________________ Telephone Number (_____) __________________

Site Registration (select one only): □ Live Television Videoconference or □ Videotape Teleconference or □ Videotape Only

Subscription rates do not include both the Live Television Videoconference Program and Videotape Teleconference Program. Each requires a separate registration fee. Registration includes connection information, course material, and CRCE packet (for live and teleconference programs).

AARC Member Rates: □ 1 program = $275 □ 2 programs = $550

□ 3 programs = $825 □ 4 programs = $824

□ 5 programs = $1,030 ($206 each) □ 6 programs = $1,236 ($206 each)

□ 7 programs = $1,442 ($206 each) □ 8 programs = $1,104 ($138 each)

Nonmember Rates: □ 1 program = $330 □ 2 programs = $660

□ 3 programs = $990 □ 4 programs = $988

□ 5 programs = $1,235 ($247 each) □ 6 programs = $1,482 ($247 each)

□ 7 programs = $1,729 ($247 each) □ 8 programs = $1,320 ($165 each)

Programs: □ Program I □ Program II □ Program III □ Program IV □ Program V □ Program VI □ Program VII □ Program VIII

Reception Via (if subscribing to live program): □ KU analog □ C Band

BACKGROUND: Among adults who have a cardiac arrest outside the hospital, the survival rate is known to be poor. However, less information is available on out-of-hospital cardiac arrest among children. This study was performed to determine the survival rate among children after out-of-hospital cardiac arrest and to identify predictors of survival. METHODS: We reviewed the records of 101 children (median age, 2 years) with apnea or no palpable pulse (or both) who presented to the emergency department at the Hospital for Sick Children in Toronto. The characteristics of the patients and the outcomes of illness were analyzed. We assessed the functional outcome of the survivors using the Pediatric Cerebral and Overall Performance Category scores. RESULTS: Overall, there was a return of vital signs in 64 of the 101 patients; 15 survived to discharge from the hospital, and 13 were alive 12 months after discharge. Factors that predicted survival to hospital discharge included a short interval between the arrest and arrival at the hospital, a palpable pulse on presentation, a short duration of resuscitation in the emergency department, and the administration of fewer doses of epinephrine in the emergency department. No patients who required more than 2 doses of epinephrine or resuscitation for longer than 20 minutes in the emergency department survived to hospital discharge. The survivors who were neurologically normal after arrest had had a respiratory arrest only and were resuscitated within 5 minutes after arrival in the emergency department. Of the 80 patients who had had a cardiac arrest, only 6 survived to hospital discharge, and all had neurologic sequelae. CONCLUSIONS: These results suggest that out-of-hospital cardiac arrest among children has a very poor prognosis, especially when efforts at resuscitation continue for longer than 20 minutes and require more than 2 doses of epinephrine.

OBJECTIVES: The present study used telephone support both to sustain abstinence and to encourage renewed quit attempts in smokers who had completed an intensive smoking cessation clinic. METHODS: Subjects were hardcore smokers (n = 1,083) who had attended a multisequential cessation clinic. They were then assigned randomly to receive telephone support (intervention calls 3, 9, and 21 months after the targeted cessation clinic quit date) or no further intervention. RESULTS: In the intervention condition, subjects who relapsed were significantly more likely to resume abstinence (that is, to recycle) than those in the comparison condition at follow-up (6 months: 17.8% vs 11.3%; 24 months: 25.7% vs 18.2%). Telephone support was not effective in preventing relapse, and overall differences in abstinence outcome were not significant. CONCLUSIONS: The major hypothesis of the current study—that telephone support would enhance the resumption of abstinence—received partial support. However, there was no evidence either of an overall treatment effect or of an effect in preventing relapse. Telephone outreach may be more effective in the context of self-help or other less-intensive interventions.

OBJECTIVES: This study examined long-term effects of a health-education intervention trial to reduce the risk of cardiovascular disease. METHODS: Surveys were conducted in California in 2 treatment and 2 control cities at baseline (1979/1980), after the 6-year intervention (1985/1986), and 3 years later at follow-up (1989/1990). Net treatment/control differences in risk-factor change were assessed for women and men 25 to 74 years of age. RESULTS: Blood pressure improvements observed in all cities from baseline to the end of the intervention were maintained during the follow-up in treatment but not control cities. Cholesterol levels continued to decline in all cities during follow-up. Smoking rates leveled off or increased slightly in treatment cities and continued to decline in control cities but did not yield significant net differences. Both coronary heart disease and all-cause mortality risk scores were maintained or continued to improve in treatment cities while leveling out or rebounding in control cities. CONCLUSIONS: These findings suggest that community-based cardiovascular disease prevention trials can have sustained effects. However, the modest net differences in risk factors suggest the need for new designs and interventions that will accelerate positive risk-factor change.
RC Protocol and Critical Pathway Clearinghouses

RC Protocol Clearinghouse
This clearinghouse makes available more than 100 TDPs submitted to the AARC by members from across the nation who have already instituted these protocols in their hospitals.

The protocols have been divided into seven packets, most of which contain ten or more sample protocols. Packets are available from the AARC at $5 each ($8 nonmembers) and currently cover the following subjects:

- Critical Care — Item PC1
- Aerosol Therapy — Item PC2
- Non-Invasive Monitoring — Item PC3
- Volume Expansion — Item PC4
- Patient Assessment — Item PC5
- Oxygen Therapy — Item PC6
- Secretion Management — Item PC7

Critical Pathway Clearinghouse
Examples of multidisciplinary critical pathways have been submitted by AARC members and are available for your informational purposes and review.

Item PC30 $5 (S8 nonmembers)
Shipping is $4 for orders totaling $15 or less.
Texas customers only; please add 8.25% sales tax (including shipping charges). Texas customers that are exempt from sales tax must attach an exemption certificate. Prices subject to change without notice.

American Association for Respiratory Care
11030 Ables Ln., Dallas, TX 75229-4593 • Fax (972) 243-2272
(972) 243-2270 or fax
your order to (972) 484-2720
(MasterCard, Visa or Purchase Order accepted)

¿No Habla Español?
(Don't Speak Spanish?)

Use the Respiratory Care in Spanish flashcard-style spiral notebook to communicate with Spanish-speaking patients. Choose the appropriate phrase in English, and have the patient read the flip side in Spanish. Fits in lab coat pocket.

Item R43 $7 ($10 nonmembers)
Shipping is $4 for orders totaling $15 or less.

American Association for Respiratory Care
11030 Ables Ln., Dallas, TX 75229-4593 • Fax (972) 243-2272 • Fax (972) 243-2720
Texas customers only; please add 8.25% sales tax (including shipping charges). Texas customers that are exempt from sales tax must attach an exemption certificate. Prices subject to change without notice.

PURPOSE: The purpose of this study was to determine factors associated with longer times to transport of emergency pediatric patients requiring tertiary care. DESIGN: Retrospective case series. SETTING: Emergency pediatric transport service. PARTICIPANTS: Infants and children transported by the transport service at the University of North Carolina Hospitals at Chapel Hill from January 1, 1988, to December 31, 1990. MAIN MEASUREMENTS: The time-to-request, the time from patient arrival at the referring hospital to the time when the request for transfer was received, and the ground time, defined as the time between the transport team’s arrival at the referring hospital and their departure, were recorded for each transported patient. RESULTS: Three hundred consecutive children 0 to 16 years (61% male) were transferred. Time-to-request was shorter for trauma patients (median 62 min, quartiles 29 and 153 min) than for medical patients (median 172 min, quartiles 83 and 508 min) (p = 0.0001). Infants, children, and adolescents had similar times-to-request of 147 minutes, 129 minutes, and 128 minutes, respectively (p = 0.91). Increased ground times were associated with diagnosis category (median of 40 min for medical patients vs 29 min for trauma patients) (p = 0.0001), with younger age (median of 46 min for infants, 35 min for children, and 28 min for adolescents) (p = 0.0001), and with the performance of major procedures (median of 35 min if no procedures were performed, 38 min if 1 procedure was performed, and 54 min if 2 procedures were performed) (p = 0.039). After the transport team arrived, 13% (40/300) of patients required at least 1 major procedure prior to transport. CONCLUSIONS: Increased time-to-request for patients with medical diagnoses, increased ground times for younger patients and patients with medical diagnoses, and failure to perform necessary procedures contribute to a prolongation of the time-to-transport of emergency pediatric patients. The magnitude of the impact of these longer transport times on outcome is unknown.

BACKGROUND: Many perceive emergency department (ED) overuse as an important cause of high medical care costs in the United States. Managed care plans and politicians have seen constraints on ED use as an important element of cost control. METHODS: We measured ED-associated and other medical care costs, using the recently released 1987 National Medical Expenditure Survey of approximately 35,000 persons in 14,000 households representative of the U.S. civilian, noninstitutionalized population. RESULTS: In 1987, total ED expenditures were $8.9 billion, or 1.9% of national health expenditures. People with health insurance represented 86% of the population and accounted for 88% of ED spending. The uninsured paid 47% of ED costs themselves; free care covered only 10%. For the uninsured, the cost of hospitalization initiated by ED visits totaled $3.3 billion, including $1.1 billion in free care. Whites accounted for 78% of total ED costs. The ED costs of poor and near-poor individuals accounted for only 0.47% of national health costs. CONCLUSIONS: ED use accounts for a small share of U.S. medical care costs, and cost shifting to the insured to cover free ED care for the uninsured is modest. Constraining ED use cannot generate substantial cost savings but may penalize minorities and the poor, who receive much of their outpatient care in EDs.

BACKGROUND: Unsustained ventricular tachycardia in patients with previous myocardial infarction and left ventricular dysfunction is associated with a 2-year mortality rate of about 30%. We studied whether prophylactic therapy with an implanted cardioverter-defibrillator, as compared with conventional medical therapy, would improve survival in this high-risk group of patients. METHODS: Over the course of 5 years, 196 patients in New York Heart Association functional class I, II, or III with prior myocardial infarction; a left ventricular ejection fraction ≤ 0.35; a documented episode of asymptomatic unsustained ventricular tachycardia; and inducible, nonsuppressible ventricular tachyarrhythmia on electrophysiologic
Is a staff position available at your facility?

Then why not recommend *AARC Times* to your Human Resources Department?

Simply tell them to call Beth Binkley at (972) 243-2272.

AARC Times has the best classified ads in respiratory care.

Perfect for RCPs on the go...

The RC Fanny pack accommodates all your necessary carry-along items.

Just Say No!

No-Smoking Buttons

These buttons will quickly catch the eye of any passer-by with bright neon colors on a black background. Package of 20. Safety-back pin.

Item R6 $8 ($12 nonmembers)

No-Smoking Stickers

Draw attention to your antismoking message with this square sticker and its bright neon colors. Package of 50.

Item PR32 $3 ($5 nonmembers)

Shipping is $4 for orders totaling $15 or less.

American Association for Respiratory Care
11030 Abies Ln., Dallas, TX 75229-4593 • (972) 243-2272 • Fax (972) 484-6010

Texas customers only, please add 8.25% sales tax (including shipping charges). Texas customers that are exempt from sales tax must attach an exemption certificate. Prices subject to change without notice.

BACKGROUND: Transdermal nicotine therapy is widely used to aid smoking cessation, but there is uncertainty about its safety in patients with cardiac disease. METHODS: In a randomized, double-blind, placebo-controlled trial at 10 Veterans Affairs medical centers, we randomly assigned 584 outpatients (of whom 576 were men) with at least 1 diagnosis of cardiovascular disease to a 10-week course of transdermal nicotine or placebo as an aid to smoking cessation. The subjects were monitored for a total of 14 weeks for the primary end points of the study (death, myocardial infarction, cardiac arrest, and admission to the hospital due to increased severity of angina, arrhythmia, or congestive heart failure); the secondary end points (admission to the hospital for other reasons and outpatient visits necessitated by increased severity of heart disease) and adverse effects of therapy; and abstinence from smoking. RESULTS: There were 48 primary and 78 secondary end points noted in a total of 95 subjects. At least 1 of the primary end points was reached by 5.4% of the subjects in the nicotine group and 7.9% of the subjects in the placebo group (difference, 2.5%; 95% confidence interval, 1.6 to 6.5; p = 0.23). In the nicotine group, 11.9% of the subjects had at least 1 of the secondary end points, compared with 9.7% in the placebo group (difference, 2.2%; 95% confidence interval, 0.2 to 4.2; p = 0.37). After 14 weeks the rate of abstinence from smoking was 21% in the nicotine group, as compared with 9% in the placebo group (p = 0.001), but after 24 weeks the abstinence rates were not significantly different (14% vs 11%, p = 0.67). CONCLUSIONS: Transdermal nicotine does not cause a significant increase in cardiovascular events in high-risk outpatients with cardiac disease. However, the efficacy of transdermal nicotine as an aid to smoking cessation in such patients is limited and may not be sustained over time.

OBJECTIVES: To review the various outcomes from cardiorespiratory resuscitation (CPR), the factors that influence these outcomes, the costs associated with CPR, and the application of cost-analyses to CPR. DATA SOURCES: Data used to prepare this article were drawn from published articles and work in progress. STUDY SELECTION: Articles were selected for their relevance to the subjects of CPR and cost-analysis by MEDLINE keyword search. DATA EXTRACTION: The authors extracted all applicable data from the English literature. DATA SYNTHESIS: Cost-analysis studies of CPR programs are limited by the high variation in resources consumed and attribution of cost to these resources. Furthermore, cost projections have not been adjusted to reflect patient-dependent variation in outcome. Variation in the patient's underlying condition, presenting cardiac rhythm, time to provision of definitive CPR, and effective perfusion all influence final outcome and, consequently, influence the cost-effectiveness of CPR programs. Based on cost data from previous studies, preliminary estimates of the cost-effectiveness of CPR programs for all 6-month survivors of a large international multicenter collaborative trial are $406,050/life saved (range $344,314 to $966,759), and $253,892/survival-adjusted-life-year (range $99,286 to $537,088). CONCLUSIONS: Reported outcome from CPR has varied from reasonable rates of good recovery, including return to full employment to 100% mortality. Appropriate CPR is encouraged, but continued widespread application appears extremely expensive.

OBJECTIVE: To develop more effective methods to assess tuberculosis (TB) control strategies so we can meet national goals for the elimination of TB in the United States. DESIGN: Using a semi-Markov model that divided the U.S. population into 5 age groups and 18 clinical stages based on disease status and risk for TB and human immunodeficiency virus (HIV) infection, we measured the effects of 5 changes in TB policy, introduced singly and in combination: (1) increased coverage and (2) improved efficacy of preventive therapy, (3) increased coverage and (4) improved efficacy of treatment, and (5) introduction of BCG vaccination. RESULTS: A BCG vaccination program that reached 10% of eligible children and 1% of eligible adults each year would produce a 17% reduction in cases and an 11% decline in deaths over 10 years. Preventive therapy programs among the general population would have little effect on the number of TB cases, but a program targeting HIV-infected patients would reduce HIV-associated TB cases and deaths 14% to 20%. A 10% improvement in the coverage and efficacy of both preventive therapy and treatment, coupled with the BCG vaccination program, would lead to a 47% decline in TB cases and a 50% decline in TB deaths relative to baseline over 10 years. CONCLUSIONS: Improvements in treatment coverage or effectiveness alone are unlikely to reach established national goals for the elimination of TB. These goals can be achieved through a combination of improvements in current programs with targeted preventive therapy and BCG vaccination programs. See the related editorial: Sharpen Available Tools for Tuberculosis Control, But New Tools Needed for Elimination—B Miller. K G Castro. JAMA 1996;276(23):1916-1917.

BACKGROUND: Limited data suggest that increased resistance to flow within endotracheal tubes (ETT) may occur in patients whose lungs are mechanically ventilated for more than 48 hours, especially when airway humidification is inadequate. This could lead to sudden ETI obstruction or induce excessive loading during spontaneous breathing. METHODS: Twenty-three such patients were randomly assigned to 3 types of airway humidifier based on 3 different working principles: a Fisher & Paykel hot water system (n = 7), a Pall BB2215 heat and moisture exchanger (HME) hydrophobic filter (n = 8), and a Dar Hygrobac 3825/4111 HME hygroscopic filter (n = 8). The decrease in intrapulmonary pressure along the ETT and the flow rate were measured in each patient every 2 days. An "effective inner diameter" was derived from those measurements and allowed the inner ETT configuration to be monitored. RESULTS: On the first day of intubation, the mean diameter was similar in the 3 groups, and was slightly smaller than the in vitro diameter (mean ± SD; 7.6 ± 0.6 mm for Fisher & Paykel, 7.7 ± 0.4 mm for Pall, and 7.5 ± 0.4 mm for Dar). The mean diameter tended to decrease from day to day. At the end of the study, the overall reduction in mean diameter was significantly greater with the hydrophobic HME (Pall) than with the 2 other systems (Pall: -6.5 ± 4% vs -2.5 ± 2.5% for Dar and -1.5 ± 3% for Fisher & Paykel; p < 0.01 with analysis of variance). The same trend was true of the mean reduction in effective inner ETT diameter expressed per day of ventilation (1.4 ± 1.5% per day for Pall vs -0.5 ± 0.4% for Dar and -0.2 ± 0.4% for Fisher & Paykel; p < 0.01). In 4
Pocket-size calendar
Each month features a cartoon or quote related to respiratory care, as well as holidays and AARC events.

To order call the American Association for Respiratory Care • (972) 243-2272
11030 Ables Ln., Dallas, TX 75229-4593 • Fax (972) 484-6010

San Diego Convention Memorabilia
Ceramic Mugs$7
Enamel Boat Lapel Pin$5
T-shirt$12
Santa Ornament$12

Shipping is $4 for orders totaling $15 or less.

To order call the American Association for Respiratory Care • (972) 243-2272

11030 Ables Ln., Dallas, TX 75229-4593 • Fax (972) 484-6010
Texas customers only, please add 8.25% sales tax (including shipping charges). Texas customers that are exempt from sales tax must attach an exemption certificate. Prices subject to change without notice.
Encourage your students to read each issue of RESPIRATORY CARE! Then when the August issue arrives, they can complete

CRCE through the Journal

and receive 6 hours of CRCE credit* through:

- Careful reading
- Thoughtful study
- Test completion

Only $5

*Specific state licensure regulations apply

1997 RESPIRATORY CARE OPEN FORUM
New Orleans, Louisiana — December 6-9

RESPIRATORY CARE welcomes abstracts of scientific reports on any aspect of respiratory care presented as:

- an original study;
- the evaluation of a method, device or protocol;
- a case or case series.

If your abstract is accepted for publication in RESPIRATORY CARE, you will be invited to present it at the 43rd International Convention & Exhibition in New Orleans, Louisiana.

See the 1997 Call for Abstracts in this issue for more information.

Early deadline: March 17, 1997
Requirements For Traveling With Oxygen

A This 8-page booklet contains everything the oxygen patient needs to know about traveling with oxygen, including helpful phone numbers. Package of 50.

Item BK16 $20 ($25 nonmembers)

"Hello, I'm Your Respiratory Care Practitioner"

B This brochure, with a new look, is packed with information that tells your patients and others in the community exactly who you are and what you do. Package of 50.

Item PR11 $10 ($15 nonmembers)

"Decisions: Choosing A Career That Makes A Difference"

C Inform people searching for a career about opportunities and benefits available in the respiratory care field. This brochure also looks at the qualifications and skills needed to become an RCP. Package of 50.

Item PR12 $10 ($15 nonmembers)
As a professional Registered Respiratory Therapist, I look to the American Association for Respiratory Care for guidance, advice, and information. Without this foundation on which I practice and depend, I would just be ‘flying by the seat of my pants.’

Although I joined the AARC as a student in 1978, it was not until 1984 when I attended my first meeting in Phoenix that I really knew my place in the organization.

It was there in a lightning-quick half hour for Respiratory Care first-time authors that I met some of the most influential people—Phil Kittredge, Dean Hess, Rob Chatburn, Chris Maxwell—in the field. I’m proud to say many of those I met that day have remained my lifelong friends. I look to the AARC for invaluable resources, including AARC Times, Clinical Practice Guidelines, videos, and patient education sheets. However, in the legion of throwaways and want-to-be journals, the one, true voice of the professional respiratory care practitioner is Respiratory Care; and, I am honored to be part of its editorial board and proud to be a member of the AARC—an organization that helps make me who I am. Why not let it do the same for you?

Richard Branson, RRT
Cincinnati, Ohio

Join Now!
AARC
11030 Abies Lane
Dallas, TX 75229-4593
(972) 243-2272
Fax (972) 484-2720
American Association for Respiratory Care
Membership Application

Please read the eligibility requirements for each of the classifications in the right-hand column, then complete the applicable section. All information requested below must be provided, except where indicated as optional. See other side for more information and fee schedule. Please sign and date application on reverse side and type or print clearly. Processing of application takes approximately 15 days.

☐ Active Associate
☐ Foreign
☐ Physician
☐ Industrial
☐ Special
☐ Student

Last Name __
First Name ___
Social Security No. ______________________________________
Home Address ___
City ___________________________________ Zip ____________
State ___________ Zip __ __ __ __ __ __ __ __
Phone No. (______) ________________________________

Primary Job Responsibility (check one only)
☐ Technical Director
☐ Assistant Technical Director
☐ Pulmonary Function Specialist
☐ Instructor/Educator
☐ Supervisor
☐ Staff Therapist
☐ Staff Technician
☐ Rehabilitation/Home Care
☐ Medical Director
☐ Sales
☐ Student
☐ Other, specify ________________________________

Type of Business
☐ Hospital
☐ Skilled Nursing Facility
☐ DME/HME
☐ Home Health Agency
☐ Educational Institution
☐ Manufacturer or supplier
☐ Other, specify ________________________________

Date of Birth (optional) ________________________________ Sex (optional) __________

U.S. Citizen? _____ Yes _____ No

Have you ever been a member of the AARC? ________________________________

If so, when? From ________________________________ to ________________________________

Preferred mailing address: ☐ Home ☐ Business

FOR ACTIVE MEMBER
An individual who holds a position related to respiratory care but does not meet the requirements of Active Member shall be Associate Members. They have all the rights and benefits of the Association except to hold office, vote or serve as chair of a standing committee. The following subcategories of Associate Membership are available: Foreign, Physician, Industrial or Student. (Individuals whose primary occupation is directly or indirectly devoted to the manufacture, sale, or distribution of respiratory care equipment or supplies). Special Members are those not working in a respiratory care-related field.

Please use the address of the location where you perform your job, not the corporate headquarters if it is located elsewhere.

Place of Employment _______________________________________
Address ___
City __
State __________ Zip __ __ __ __ __ __ __ __
Phone No. (______) ________________________________

Medical Director/Medical Sponsor ____________________________

FOR ASSOCIATE OR SPECIAL MEMBER
Individuals who hold a position related to respiratory care but do not meet the requirements of Active Member shall be Associate Members. They have all the rights and benefits of the Association except to hold office, vote or serve as chair of a standing committee. The following subcategories of Associate Membership are available: Foreign, Physician, Industrial or Student. (Individuals whose primary occupation is directly or indirectly devoted to the manufacture, sale, or distribution of respiratory care equipment or supplies). Special Members are those not working in a respiratory care-related field.

Please use the address of the location where you perform your job, not the corporate headquarters if it is located elsewhere.

Place of Employment _______________________________________
Address ___
City __
State __________ Zip __ __ __ __ __ __ __ __
Phone No. (______) ________________________________

FOR STUDENT MEMBER
Individuals will be classified as Student Members if they meet all the requirements for Associate Membership and are enrolled in an educational program in respiratory care accredited by, or in the process of seeking accreditation from, an AARC-recognized agency.

SPECIAL NOTICE — Student Members do not receive Continuing Respiratory Care Education (CRCE) transcripts. Upon completion of your respiratory care education, any continuing education credits may be pursued upon your reclassification to Active or Associate Member.

School/RC Program _______________________________________
Address ___
City __
State __________ Zip __ __ __ __ __ __ __ __
Phone No. (______) ________________________________

Length of program
☐ 1 year ☐ 4 years
☐ 2 years ☐ Other, specify ________________________________

Expected Date of Graduation (REQUIRED INFORMATION)
Month ______ Year ______
American Association for Respiratory Care Membership Application

Demographic Questions
We request that you answer these questions in order to help us design services and programs to meet your needs.

Check the Highest Degree Earned
- [] High School
- [] RC Graduate Technician
- [] Associate Degree
- [] Bachelor's Degree
- [] Master's Degree
- [] Doctorate Degree

Number of Years in Respiratory Care
- [] 0-2 years
- [] 3-5 years
- [] 6-10 years
- [] 11-15 Years
- [] 16 years or more

Job Status
- [] Full Time
- [] Part Time

Credentials
- [] RRT
- [] CRT
- [] Physician
- [] CRNA
- [] RN
- [] LVN/LPN
- [] CPFT
- [] RPFT
- [] Perinatal/Pediatric

Salary
- [] Less than $10,000
- [] $10,001-$20,000
- [] $20,001-$30,000
- [] $30,001-$40,000
- [] $40,000 or more

Membership Fees
Payment must accompany your application to the AARC. Fees are for 12 months. (NOTE: Renewal fees are $65.00 Active, Associate-Industrial or Associate-Physician, or Special status; $80.00 for Associate-Foreign status; and $35.00 for Student status).

- [] Active $77.50
- [] Associate (Industrial or Physician) $77.50
- [] Associate (Foreign) $92.50
- [] Special $77.50
- [] Student $35.00

TOTAL $________

Speciality Sections
Established to recognize the specialty areas of respiratory care, these sections publish a newsletter four times a year that focuses on issues of specific concern to that specialty. The sections also design the specialty programming at the national AARC meetings.

- [] Adult Acute Care Section $5.00
- [] Education Section $10.00
- [] Perinatal-Pediatric Section $5.00
- [] Diagnostics Section $5.00
- [] Continuing Care-Rehabilitation Section $5.00
- [] Management Section $10.00
- [] Transport Section $5.00
- [] Home Care Section $5.00
- [] Subacute Care Section $5.00

TOTAL $________

GRAND TOTAL = Membership Fee plus optional sections $________

Please Sign
I hereby apply for membership in the American Association for Respiratory Care and have enclosed my dues. If approved for membership in the AARC, I will abide by its bylaws and professional code of ethics. I authorize investigation of all statements contained herein and understand that misrepresentations or omissions of facts called for is cause for rejection or expulsion.

A yearly subscription to Respiratory Care journal and AARC Times magazine includes an allocation of $6.50 from my dues for each of these publications.

NOTE: Contributions or gifts to the AARC are not tax deductible as charitable contributions for income tax purposes. However, they may be tax deductible as ordinary and necessary business expenses subject to restrictions imposed as a result of association lobbying activities. The AARC estimates that the nondeductible portion of your dues — the portion which is allocatable to lobbying — is 26%.

Signature ____________________________
Date ____________________________

Mail application and appropriate fees to:
American Association for Respiratory Care • 11030 Ables Lane • Dallas, TX 75229-4593 • (972) 243-2272 • Fax (972) 484-2720
patients, the ETT became obstructed and emergency repeated tracheal intubation was required. The Pall HME and the Fisher & Paykel system were being used in 3 and 1 patient, respectively. Before obstruction, the reduction in ETT diameter was significantly greater for these 4 patients than for the remaining 23 patients (7.8 ± 1.4% vs 3.1 ± 4.1%; p < 0.01). CONCLUSIONS: During prolonged mechanical ventilation, significant alterations in inner ETT configuration occur frequently and are influenced by the type of humidification device used. In vivo monitoring of ETT mechanical properties might be clinically useful.

BACKGROUND: Economics has caused the trend of early tracheal extubation after cardiac surgery, yet no prospective randomized study has directly validated that early tracheal extubation anesthetic management decreases costs when compared with late extubation after cardiac surgery. METHODS: This prospective, randomized, controlled clinical trial was designed to evaluate the cost savings of early (1-6 hours) versus late tracheal extubation (12-22 hours) in patients after coronary artery bypass graft (CABG) surgery. The total cost for the services provided for each patient was determined for both the early and late groups from hospital admission to discharge home. All costs applicable to each of the services were classified into direct variables, direct fixed costs, and overhead (an indirect cost). Physician fees and heart catheterization costs were included. The total service cost was the sum of unit workload and overhead costs. RESULTS: One hundred patients having elective CABG who were younger than 75 years were studied. Including all complications, early extubation (n = 50) significantly reduced cardiovascular intensive care unit (CVICU) costs by 53% (p < 0.026) and the total CABG surgery cost by 25% (p < 0.019) when compared with late extubation (n = 50). Forty-one patients (82%) in each group were tracheally extubated within the defined period. In the early extubation group, the actual departmental cost savings in CVICU nursing and supplies was 23% (p < 0.005), in ward nursing and supplies was 11% (p < 0.05), and in respiratory therapy was 12% (p < 0.05). The total cost savings per patient having CABG was 9% (p < 0.001). Further cost savings using discharge criteria were 51% for CVICU nursing and supplies (p < 0.001), 9% for ward nursing and supplies (p < 0.05), and 29% for respiratory therapy (p < 0.001), for a total cost savings per patient of 13% (p < 0.001). Early extubation also reduced elective case cancellations (p < 0.002) without any increase in the number of postoperative complications and readmissions. CONCLUSIONS: Early tracheal extubation anesthetic management reduces total costs per CABG surgery by 25%, predominantly in nursing and in CVICU costs. Early extubation reduces CVICU and hospital length of stay but does not increase the rate or costs of complications when compared with patients in the late extubation group. It shifts the high CVICU costs to the lower ward costs. Early extubation also improves resource use after cardiac surgery when compared with late extubation.
Promote Your Profession With RCP Apparel

Colorful T-Shirt
Sport this bright-colored T-shirt design, which proclaims that there is no substitute for your expertise as an RCP. Available in 50/50 white cotton/polyester blend, sizes medium, large, extra large, and extra-extra large. (Limited supply).

Item R16 $9.75 ($11.50 nonmembers)
Add $2.50 for extra-extra large.

RC Sweatshirt
There is no substitute for your respiratory care practitioner or this heavy-weight, 50/50 blend teal sweatshirt (left) with colorful embroidered logo (above). Medium, large, extra large, and extra-extra large available. (Limited supply).

Item R19 $25 ($30 nonmembers)
Add $2.50 for extra-extra large.

RC Cap
Complete your ensemble with this black and teal cap. Matches both the T-shirt and sweatshirt. One size fits all.

Item R17 $6.50 ($9 nonmembers)
A Study of Chronic Ventilator Patients in the Hospital

Chronic ventilator-dependent patients are costing American hospitals more than $9 million per day according to this Gallup study conducted for the AARC. This important study provides information on patients who depend on life-support systems; why, how, and where they are being treated; and the cost of treatment. 47 pages, 9 tables, 12 figures.

Item BK20 $25 ($50 nonmembers)
Add $5 for shipping.

Call (972) 243-2272 or Fax your order to (972) 484-6010
American Association for Respiratory Care
11030 Ables Ln., Dallas, TX 75229-4593

The AARC Human Resources Survey: A Study of Respiratory Care Human Resources in Hospitals

Covers a wide range of human resource issues, including compensation, numbers of full-time equivalents, job vacancy rates, education, credentialing, and licensure. Even includes information on age, sex, and years of experience. Includes comprehensive summary, position profiles, salaries, education, experience, credentials, and regional demographics. Vacancies are inventoried. 68 pages, 66 tables.

Item BK12 $35 ($50 nonmembers)
Add $6 for shipping.

Call (972) 243-2272 or Fax your order to (972) 484-6010
American Association for Respiratory Care
11030 Ables Ln., Dallas, TX 75229-4593

The AARC Membership Patch: Wear it with Pride

Sport your membership in the AARC with this washable patch. Wear it on your lab coat or sew it on a tote bag. Approximately 3/4".

Item PR2, Regular $3 Item PR2S, Student $3
Shipping $4 for orders totaling $15 or less.

American Association for Respiratory Care
11030 Ables Ln., Dallas, TX 75229-4593 • (972) 243-2272
Fax (972) 484-6010

Texas customers only, please add 8.25% sales tax (including shipping charges). Texas customers that are exempt from sales tax must attach an exemption certificate. Prices subject to change without notice.

BACKGROUND: Although evidence suggests that secretions lining the inner wall of the endotracheal tube (ETT) often reduce its cross-sectional area, no data are available on the work of breathing as affected by the ETT. A noninvasive method is proposed for estimating the additional work of breathing necessitated by the ETT in patients whose lungs are mechanically ventilated. This method (the acoustic-Blasius method) involves (1) determining the inner geometry of the ETT using the acoustic reflection method and (2) using these geometric data to solve the Blasius method that characterizes the ETT pressure drop-flow relation. METHODS: To evaluate the acoustic-Blasius method in vivo, the authors computed the work of breathing due to the ETT in 4 healthy persons breathing through an ETT connected to a pressure-support device and in 5 tracheally intubated patients receiving mechanical assistance in the pressure-support mode. For the tracheally intubated patients, the reference value was the work calculated from the ETT pressure drop measured between the 2 ends of the ETT using a pressure catheter. RESULTS: In the healthy participants and the tracheally intubated patients, there was close agreement between inspiratory work per cycle values estimated by directly measuring the ETT pressure drop and calculating using the acoustic-Blasius method. The difference was consistently less than 0.08 joules (< 10% of the reference value). CONCLUSIONS: The data show that the acoustic-Blasius method allows noninvasive quantification of the ETT-related work of breathing in situ.

Suffocation by bedclothes became a popular diagnosis in the 1940s but gradually became replaced with the diagnostic label of Sudden Infant Death Syndrome (SIDS). In 1991 a paper purported that, instead of SIDS, pillows filled with polyurethane beads had caused death by rebreathing suffocation; this conclusion was reached on the basis of experiments with anesthetized rabbits breathing through a doll’s head that was placed face down on the pillow. Because of the anesthetia, rabbits could not change their face down position. The doll’s naries could not collapse, which would have resulted in rapid death due to conventional suffocation. The rabbits required up to 3 hours or more to die of hypercarbia and hypoxia. Studies in normal infants revealed that they turned from the face-down position after only 2 minutes. The only infant who retained CO2 did not die of a fatal neurologic disorder, with central hypoventilation. Using the rabbit/doll’s head and mechanical models, a wide range of bedding was induded, including cushions, sheepskins, pillows, comforters, foam mattresses, and even simple blankets and sheets as potentially causing fatal rebreathing. Except for the use of pillows in general, as well as mattresses filled with kapok and bark, there has been no epidemiologic support for these indications. Although normal infants are unlikely to succumb to rebreathing suffocation, infants with blunted ventilatory responsiveness and delayed arousal due to prior hypoxia were hypothesized to be at increased risk. Support for this concept was found in the pathology of the brain stem in victims of SIDS that was attributed to prior hypoxic injury. In infants who survived prolonged apnea, < 20% have demonstrated a diminished ventilatory responsiveness to hypercarbia, but, more significantly, none had an absent response. Arousal to hypercarbia, an abnormality which is crucial to the hypothesis of rebreathing suffocation, is regularly present in normal subjects, but the threshold is higher in near-SIDS infants; however, no instances of failure to arouse have been reported.

Super RT and the Smokebusters Club

This “super” package comes complete with everything you need to put on a first-rate program for school children on the hazards of smoking. Complete Kit — Item PR7L $45 ($60 nonmembers)
Order Item PR7XL for an extra-large shirt. Add $4.50 for shipping.

Call (972) 243-2272 or fax your order to (972) 484-6010
American Association for Respiratory Care, 11030 Ables Ln., Dallas, TX 75229-4593

Each kit contains:
✓ Super RT T-shirt (available in large or extra large)
✓ Three puppets
✓ Three different scripts of short plays the kids can put on to illustrate the dangers of smoking
✓ 30 activity books
✓ 30 non-smoking fans
✓ 50 Smokebusters stickers
✓ 30 Smokebusters bags
✓ A lesson plan for presentations and suggestions for future projects

Additional items can be ordered at the following rates:
10 activity books
Item PR8 $8 ($12 nonmembers)

Package of 50 Smokebusters stickers
Item PR30 $3 ($5 nonmembers)

Package of 50 Smokebusters bags
Item PR31 $6 ($10 nonmembers)
ABSTRACTS

in near-SIDS. If the infant is placed on his or her back or side, the issue of bedding could become moot; unfortunately, a sizable percentage of infants are still being placed prone for sleep. Instead of confusing parents with an ever-expanding list of "dangerous bedding," the message "Back to Sleep" should be emphasized.

Variation in body position has been shown to affect respiratory function in adults and neonates with and without respiratory illness. At present it remains unclear why respiratory function should be affected by different body positions. We hypothesized that the effect of body weight on the relatively compliant chest wall of the newborn infant in the prone position would cause a reduction in functional residual capacity (FRC) and a compensatory improvement in ventilation/perfusion matching as measured by effective pulmonary blood flow. To evaluate this, a paired crossover study was performed on 12 normal newborn infants. The inert gas (argon) rebreathing method adapted for neonates was used to measure FRC. Simultaneously effective pulmonary blood flow (Qp,el) was determined using Fream 22 and a mass spectrometer with computerized analysis. The babies were studied in 3 different positions in random order: prone, supine, and right lateral decubitus. The means (95% confidence intervals) of the 3 groups for FRC were 23.8 (19.2 to 28.4), 23.8 (20.2 to 27.5), and 24.3 (19.5 to 29.2) mL/kg, respectively (p = 0.59), and for Qp,el were 104 (91 to 116), 103 (90 to 115), and 107 (97 to 122) mL/kg-min, respectively (p = 0.01). Thus no significant differences were demonstrated. In 9 of the babies, a repeat supine measurement was taken at the end of the study to assess repeatability of the method. In these 9 babies alone the results were 22.7 (19.1 to 26.3) and 22.1 (18.6 to 25.6) mL/kg for FRC, and 102 (89 to 116) and 98 (90 to 107) mL/kg-min for Qp,el. The coefficients of repeatability were 4.7 mL/kg for FRC (2%) and 30 mL/kg-min for QP,el (30%). See the related editorial: How Should Sleeping Babies Lie?—JG Brooks, Pediatrics, Pulmonary 1996;22:333-334.

OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) varies widely in its course. To evaluate predictive parameters at presentation to the hospital, we investigated 99 patients with IPF (47 women), focusing on extensive lung function tests. METHODS: Standard tests of lung volumes, arterial oxygen tension, and gas exchange at rest and during bicycle exercise were performed. Survival rates in relation to functional parameters were calculated using the actuarial method. Differences in survival proportions were summarized as hazard ratios, and significance levels were determined by log-rank test. RESULTS: At presentation, most patients showed a reduced total lung capacity (TLC) of 79.2 ± 21.1%, an arterial oxygen tension (PaO2) considered pathologic in 63%, when related to age, a significant decrease of PaO2 with 11.8 ± 12.1 mm Hg and an increase of the alveolar-arterial oxygen pressure difference with 46.4 ± 16.4 (12.2 to 76.8) mm Hg during bicycle exercise. Diminished survival was associated with an age older than 50 years, a reduced value to more than 2 SDs below the predicted values of both, TLC alone, or in combination with a reduced vital capacity. Factors not influencing survival were gender, parameters of gas exchange at rest, and PaO2 at rest and during bicycle exercise. CONCLUSIONS: We conclude that standard lung function tests make it possible to assess the prognosis of patients with IPF, while extensive tests like gas exchange measurements at rest and during bicycle exercise do not contribute additional information to make the prognostic estimations more precise. See the related editorial: Pulmonary Function Tests and Idiopathic Pulmonary Fibrosis: Simple May Be Better—SH Kirland, RH Winterbaue. Chest 1997;111(1):7-8.

OBJECTIVE: To assess the role of gastric tonometry in monitoring children receiving extracorporeal life support (ECLS) and to determine if DCO or pH in the weaning phase of ECLS predicts survival. DESIGN: A prospective study of consecutive patients treated with ECLS. SETTING: A tertiary pediatric ICU that is the ECLS referral center for Australia. PATIENTS: Twenty consecutive children receiving ECLS for cardiovascular or respiratory failure. INTERVENTIONS: All children were monitored throughout their ECLS course using a tonometer inserted into the stomach via the orogastric route. The DCO, in the tonometer balloon was measured every 4 to 6 hours and the pH was calculated using the Henderson-Hasselbalch equation. The DCO, which is the difference between DCO in tonometer saline solution and arterial blood, was calculated. We compared the ability of pH, DCO, heart rate, mean arterial pressure, arterial pH, base deficit, and blood lactate to predict death or survival during the weaning phase. Measurements were taken on the lowest level of support, which for veno-arterial extracorporeal membrane oxygenation and ventricular assist device was defined as the lowest ECLS pump flow, and on veno-venous extracorporeal membrane oxygenation was defined as the time of lowest ECLS gas flow. Predictive power was assessed using the receiver operating characteristic (ROC) analysis on the data collected at these times. RESULTS: In the weaning phase of ECLS, the pH was significantly lower in children who died (pH = 7.21; 95% confidence intervals, 7.14 to 7.28) than in those who survived (pH = 7.38; 95% confidence intervals, 7.28 to 7.47). The DCO was significantly higher in children who died (23.6 mm Hg; 95% confidence intervals, 14.3 to 33.1) compared with survivors (4.7 mm Hg; 95% confidence intervals, -0.78 to 10.1). The area under the ROC curve was 0.95 for DCO, and 0.88 for pH. DCO and measured survival better than base deficit (area under ROC curve, 0.82), blood lactate level (0.29), arterial pH (0.65), heart rate (0.62), and mean arterial pressure (0.74). CONCLUSIONS: DCO is a clinically meaningful measurement in children receiving ECLS. A high DCO was a good predictor of death in this series. Gastric tonometry may provide a useful measure of the adequacy of regional perfusion and oxygenation in this group of patients. See the related editorial: Monitoring Tissue Oxygenation: The Search for the Grail—DR Danzker. Chest 1997;111(1):12-14.

OBJECTIVE: To examine the long-term maintenance of a previously reported behavioral counseling intervention to reduce asthmatic children's exposure to environmental tobacco smoke (ETS). PARTICIPANTS: Families of asthmatic children (6 to 17 years), including at least 1 parent who smoked in the home, recruited from 4 pediatric allergy clinics. DESIGN: Participants were randomized to 1 of 3 groups: behavioral counseling to reduce ETS exposure, self-monitoring control, and usual medical care control. Counseling concluded at month 6, and the original trial ended at month 12. Two follow-up interviews occurred at months 20 and 30. MEASUREMENTS & RESULTS: The originally reported analysis of baseline to 12 months was reanalyzed with a more robust restricted maximum likelihood procedure. The 2-year follow-up period was analyzed similarly. Significantly greater change occurred in the counseling group than the control groups and was sustained throughout the 2 years of follow-up. Further exploratory analyses suggested that printed counseling materials given to all participants at month 12 (conclusion of the original study) were

(Abstracts continued on Page 319)
Put the AARC at Your Fingertips

Do you have carnivorous informaticus instantaneous — the need for information now? Right now?!

Today we have all the information you need right at your fingertips. Do you need the full complement of Clinical Practice Guidelines? They’re there, on our website, at www.aarc.org.

Do you want to reference your State Practice Act? Do you have a question you want input on—from RCPs around the world? Want to find a job? Need a tips sheet for a patient on asthma? Check www.aarc.org.

Need to know who sells CPAP head straps? Want to know the latest in health care news?

Can you find all the best links to other respiratory-related websites? What’s the AARC’s position on verbal orders? Do you need a paper on RCPs as multiskilled health care providers? See www.aarc.org.

Do you want to apply for $1,000,000? Do you know what Tipper Gore has to say about respiratory care practitioners? Want to know more about the cost-effectiveness of respiratory care? Go to www.aarc.org.

Check us out. We’re right at your fingertips.

AARC Online
http://www.aarc.org

To register for the AARC Members Only area on AARC Online, send an E-mail message to webmaster@aarc.org with your name and AARC member number.
Volume Support Ventilation in Infants and Children:
Analysis of a Case Series

Heather T Keenan MD and Lynn D Martin MD

BACKGROUND: Volume support ventilation (VSV) augments a patient’s spontaneous respiratory efforts by delivering a patient-triggered, pressure-limited, flow-cycled breath, monitors breath-to-breath changes in the pressure-volume relationship of the respiratory system during spontaneous ventilation, and regulates airway pressure to maintain a predetermined minute ventilation. Use of VSV has not been previously reported; consequently, we report our experience with VSV in infants, children, and adolescents.

PATIENTS & METHODS: All patients requiring mechanical ventilation in the Pediatric and Infant Intensive Care Units from 12/94 through 12/95 were retrospectively reviewed, and those receiving VSV identified. Demographic data and ventilatory parameters were obtained from the medical record immediately before starting, upon initiation of, and at the conclusion of VSV.

RESULTS: Twenty children were mechanically ventilated with VSV for part or all of their ICU course. Peak inspiratory pressure (PIP) and set tidal volume (VT) decreased with the change to VSV [mean (SD): PIP 28.5 (6.3) vs 22.9 (7.3) cm H2O, p < 0.05; VT 9.6 (2.7) vs 7.8 (1.9) mL/kg, p < 0.05]. PIP, mean airway pressure (Paw mean), and VT decreased between initial and final VSV settings [PIP 22.9 (7.3) vs 18.1 (7.1) cm H2O, p < 0.05; Paw 9.2 (6.3) vs 7.9 (3.0) cm H2O, p < 0.05; VT 7.8 (1.9) vs 6.0 (2.1) mL/kg, p < 0.05]. Eighteen patients (90%) were successfully weaned to extubation. Only 12 of 20 patients (60%) were successfully extubated from VSV. Reasons for failure to wean or extubate from VSV included clinician unfamiliarity (5 patients), paralyzed hemidiaphragm, airway obstruction/tracheal stenosis, and altered respiratory drive (1 each). Four of 5 patients (80%) not extubated from VSV due to clinician unfamiliarity were successfully extubated within a few hours of changing to a different mode of ventilation. CONCLUSION: Although experience with VSV is limited and nuances must be mastered, theoretic advantages (lower airway pressures, enhanced patient comfort, appropriate respiratory muscle use, and ease of clinical assessment) may make it useful in selected patients.

Further study appears warranted. [Respir Care 1997;42(3):281-287]

Introduction

Over the past 20 years, many new modes of ventilation have been made available with theoretic advantages for ventilating or weaning the patient from mechanical ventilation. In the 1970s, intermittent mandatory ventilation (IMV) was introduced with the Babybird ventilator as a means to ventilate infants and was first popularized by Downs as a method of weaning from mechanical ventilation in adult patients. IMV.
as classically presented, is a machine triggered, flow-limited, time-cycled mode of ventilation that provides continuous airflow to allow spontaneous breaths. Therefore, it provides a guaranteed level of minute ventilation while permitting additional spontaneous breaths with minimal imposed work of breathing. The development of microprocessor technology enabled subsequent generations of ventilators to sense a patient’s inspiratory effort and to deliver synchronized mechanical breaths (SIMV). Theoretic advantages of SIMV were improved patient synchrony with the ventilator and maintenance of respiratory muscle function and coordination. It was hoped that this method of ventilation would allow a smooth transition from controlled mechanical ventilation to spontaneous ventilation. However, the inspiratory and expiratory values of the synchronized microprocessor ventilators imposed significant increases on the patient's work of breathing.

Pressure support ventilation (PSV) was added to many ventilators in the 1980s. PSV is a patient-triggered, pressure-limited, time-cycled method of ventilation designed to overcome the resistance of the endotracheal tube and respiratory circuit. Thus, it decreases the patient's work of breathing by pressure assisting each breath. Some investigators have suggested that the low-pressure-, high-volume-change work per breath provided by PSV enhances endurance conditioning of the diaphragm as opposed to the high-pressure, low-volume strength conditioning of the diaphragm seen with all other modes of assisted ventilation. As the patient recovers, the support could gradually be decreased to exercise the respiratory muscles. This endurance conditioning theoretically may prove beneficial to the diaphragm and aid in the weaning of patients from the ventilator. Furthermore, this mode of ventilation was thought to be more comfortable because the machine allows patients to set their own respiratory rate, inspiratory time, and flow.

Volume support ventilation (VSV), introduced in the 1990s with the Siemens Servo 300 mechanical ventilator (Siemens-Elema AB, Solna, Sweden), is an option for mechanically ventilating patients designed to augment a patient’s spontaneous respiratory efforts by delivering a patient-triggered, pressure-limited, time-cycled breath. Like pressure support, the patient determines not only the respiratory frequency but also the inspiratory time and flow. However, VSV has the capability of monitoring breath-to-breath changes in the pressure-volume relationship of the respiratory system and regulating the delivered airway pressure to achieve a minimum minute ventilation. To our knowledge, the use of VSV has not been previously reported in adults or children; hence, the aim of this descriptive, retrospective case series is to present our experience with VSV in infants, children, and adolescents recovering from cardiorespiratory failure.

Patients & Methods

Patients who received VSV in the Pediatric Intensive Care Unit (PICU) and the Infant Intensive Care Unit (IICU) at Children’s Hospital and Medical Center were retrospectively identified by review of all respiratory flow sheets from December 1994 to December 1995. Information extracted from the medical record of identified patients included age, weight, diagnosis, and endotracheal tube size. Information regarding the patient’s ventilatory course was also obtained, including total days ventilated, days on VSV, problems with VSV, and outcome of attempted extubation from VSV. If the patient was not successfully extubated from VSV, the reason was noted. Successful extubation was defined as a 24-hour period without mechanical ventilation following extubation. Mean airway pressure (Paw), peak inspiratory pressure (PIP), and positive end-expiratory pressure (PEEP), tidal volume (Vt), respiratory rate, and arterial blood gas tensions (when available) were recorded immediately prior to changing to VSV, on the initial VSV settings, and immediately prior to extubation. Measurements of airway pressures, inspiratory Vt, and Vexp were taken from the Servo 300 digital display. Data from all ventilators were corrected for tubing compliance, temperature, and pressure; and, consistent with institutional policy, the ventilators received a pre-use function test prior to each use. In addition, all Siemens Servo 300 ventilators underwent a formal calibration every 1,000 hours as specified by the manufacturer. In all cases, the decisions to use VSV as well as the initial transition to and subsequent weaning with VSV were left to the discretion of the bedside care team. In general, our practice is to limit the use of volume support to infants and children with intact respiratory drive and those with normal lung mechanics (i.e., those intubated for airway protection) or those in the recovery phase of their respiratory illness.

The hypothesis that there was no difference between the measured variables when the patient was changed to volume support or between the initial and final volume support settings was tested using the Wilcoxon matched pair signed rank test. A non-parametric test was chosen for non-normally distributed data. Significance was defined as p < 0.05. The Bonferroni method was used to adjust for multiple comparisons.\(^{10}\)

Results

Over the study period, 591 patients were ventilated for 4,431 total ventilator days in the two ICUs. Of the 591 patients, 20 received VSV for a total of 119 days. Their clinical characteristics are presented in Table 1. The wide range of ages, weights, and diagnoses are representative of the population in the PICU and IICU. Several different modes of ventilation were used in patients prior to the change to VSV. A composite of data is displayed in Table 2.

Ventilation variables are displayed in Table 3. PIP and set VT decreased after patients were changed to VSV from the previous mode. The PIP, Paw, and VT between the initial VSV value and the VSV value prior to extubation also decreased. The respiratory rate increased between the initial and final
Table 1. Clinical Characteristics of Patients Receiving Volume Support Ventilation (VSV).

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Age</th>
<th>Weight (kg)</th>
<th>Diagnosis/Condition</th>
<th>Mode of Ventilation Prior to VSV</th>
<th>Duration of Ventilation (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>5.7</td>
<td>Postoperative bi-directional Glenn procedure for hypoplastic left heart</td>
<td>SIMV-PL*</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>36.0</td>
<td>Ulcerative colitis, enterocutaneous fistula, sepsis syndrome</td>
<td>SIMV-PL</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>54.8</td>
<td>Near-drowning, acute respiratory distress syndrome</td>
<td>SIMV-PL</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>5.6</td>
<td>Postoperative bi-directional Glenn procedure for hypoplastic left heart</td>
<td>SIMV-VL</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2.2</td>
<td>34-wk premature, RSV bronchiolitis, bronchopneural fistula</td>
<td>HFOV, PRVC</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>24.2</td>
<td>Near-drowning, pulmonary edema</td>
<td>PRVC</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>32.2</td>
<td>Necrotising fasciitis, acute respiratory distress syndrome</td>
<td>HFOV, PRVC</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>75.0</td>
<td>Staphylococcal sepsis, toxic shock syndrome, necrotizing fasciitis</td>
<td>SIMV-VL</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>30.0</td>
<td>Spastic quadriplegia, aspiration pneumonia</td>
<td>SIMV-VL</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>5.7</td>
<td>CHARGE association, micrognathia, tracheal stenosis</td>
<td>SIMV-PL</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>6.6</td>
<td>Postoperative bi-directional Glenn procedure, scimitar syndrome, single ventricle</td>
<td>SIMV-PL</td>
<td>>60</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>3.6</td>
<td>Postoperative repair of tracheoesophageal fistula</td>
<td>SIMV-PL</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>12.0</td>
<td>Post-Fontan procedure for double-outlet RV & cardiac arrest</td>
<td>SIMV-VL</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>12.6</td>
<td>Ebstein's anomaly, influenza A, staphylococcal endocarditis</td>
<td>HFOV, SIMV-PL</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>19</td>
<td>100.0</td>
<td>Repair of ascending aortic aneurysm, Marfan's syndrome</td>
<td>SIMV-VL</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>13</td>
<td>39.4</td>
<td>Meningococcemia, septic shock</td>
<td>PRVC</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>0.9</td>
<td>26-wk AGA premature, necrotizing enterocolitis</td>
<td>SIMC-PL</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>8.0</td>
<td>Infantile botulism</td>
<td>—</td>
<td>53</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>77.0</td>
<td>Postoperative repair of C-6 fracture quadriplegia from motor vehicle accident</td>
<td>SIMV-PL</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>11.3</td>
<td>Post-Fontan procedure for tricuspid atresia</td>
<td>SIMV-PL</td>
<td>7</td>
</tr>
</tbody>
</table>

*SIMV-PL = synchronized intermittent mandatory ventilation, pressure-limited; SIMV-VL = synchronized intermittent mandatory ventilation, volume-limited; RSV = respiratory syncytial virus; HFOV = high-frequency oscillatory ventilation; PRVC = pressure-regulated volume control; CHARGE = syndrome including developmental defects of the eye, heart, craniofacial, limb, and genital and/or ear anomalies; GEA = appropriate for gestational age.

Table 2. Descriptive Data on Patients Who Received Volume Support Ventilation (VSV).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, months</td>
<td>31</td>
<td>10-221</td>
</tr>
<tr>
<td>Weight, kilograms</td>
<td>12.0</td>
<td>0.9-100.0</td>
</tr>
<tr>
<td>Total ventilator days</td>
<td>12</td>
<td>2-53</td>
</tr>
<tr>
<td>Total days of VSV</td>
<td>2.5</td>
<td>0.5-53.0</td>
</tr>
</tbody>
</table>

Table 3. Changes in the Measured Ventilator Parameters During Volume Support Ventilation (VSV).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior to VSV</th>
<th>Initial VSV</th>
<th>Final VSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak airway pressure (cm H2O)</td>
<td>28.5 (6.3)*</td>
<td>22.9 (7.3)</td>
<td>18.1 (7.1)</td>
</tr>
<tr>
<td>Mean airway pressure (cm H2O)</td>
<td>12.1 (5.9)</td>
<td>9.2 (6.3)</td>
<td>7.9 (3.0)</td>
</tr>
<tr>
<td>Total minute ventilation (mL/kg/min)</td>
<td>350 (279)</td>
<td>304 (239)</td>
<td>359 (368)</td>
</tr>
<tr>
<td>Inspiratory tidal volume (mL/kg)</td>
<td>9.6 (2.7)</td>
<td>7.8 (1.9)</td>
<td>6.0 (2.1)</td>
</tr>
<tr>
<td>Total respiratory rate (f)</td>
<td>23.5 (15.0)</td>
<td>26.6 (13.2)</td>
<td>35.0 (13.7)</td>
</tr>
</tbody>
</table>

* Values are mean (SD).

p < 0.05 between prior to VSV and initial VSV values.

p < 0.05 between initial VSV and final VSV values.

VSV setting. The increased respiratory rate coupled with the decreased V̇̇ resulted in equivalent V̇̇ during initial VSV and prior to extubation. Paired arterial blood gas values were not available for all patients, but for the 11 patients for whom they were available, no significant difference was seen in pH [pre-VSV 7.39 (0.07) vs VSV 7.43 (0.06) p = 0.06], ṖO2; [pre-VSV 46 (10) vs VSV 44 (7) torr, p = 0.47], and ṖCO2; [pre-VSV 87 (26) vs VSV 81 (28) torr, p = 0.49] from the previous mode of ventilation to VSV.

Eighteen of the patients (90%) were successfully weaned to extubation and remained extubated. Of those, 12 were extubated from VSV. Reasons for failure to be weaned or extubated from VSV are shown in Table 4. Four patients weaned well on VSV but were changed to an alternate mode 5-24 hours prior to extubation because the clinician was unfamiliar with the use of V̇̇ during VSV. All of these patients were successfully extubated. One patient required reintubation shortly after elective extubation from VSV. In retrospect, this patient had increasing PIP, ṖO2, and respiratory rate prior to extubation. Therefore, the clinician did not meet the usual criteria for extubation and not surprisingly required immediate reintubation. One patient with a paralyzed left hemidiaphragm secondary to iatrogenic phrenic nerve injury did well on VSV, but eventually required a tracheotomy and home ventilation. One patient extubated from VSV developed imme-
Table 4. Description of Patients for whom Volume Support Ventilation (VSV) Was Considered a Failure

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Age</th>
<th>Diagnosis/Condition</th>
<th>Type of Failure</th>
<th>Etiology of Failure</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>11 yr</td>
<td>Spastic quadriplegia, aspiration pneumonia</td>
<td>Extubation</td>
<td>Clinician preference</td>
<td>Switched to SIMV+PSV: 24 hours prior to extubation</td>
</tr>
<tr>
<td>10</td>
<td>5 mo</td>
<td>CHARGE association, micrognathia, tracheal stenosis</td>
<td>Extubation</td>
<td>Airway obstruction</td>
<td>Tracheotomy</td>
</tr>
<tr>
<td>11</td>
<td>8 mo</td>
<td>Postoperative bi-directional Glenn procedure, scimitar syndrome, single ventricle</td>
<td>Extubation</td>
<td>Paralyzed left hemidiaphragm</td>
<td>Tracheotomy and chronic home ventilation</td>
</tr>
<tr>
<td>12</td>
<td>10 d</td>
<td>Postoperative repair of tracheoesophageal fistula</td>
<td>Extubation</td>
<td>Respiratory distress</td>
<td>Switched to SIMV following immediate re-intubation</td>
</tr>
<tr>
<td>13</td>
<td>3 yr</td>
<td>Post Fontan procedure for double-outlet RV and cardiac arrest</td>
<td>Weaning</td>
<td>Neurologic injury with inconsistent ventilatory drive</td>
<td>Switched to SIMV until resolution of neurologic injury and extubation</td>
</tr>
<tr>
<td>17</td>
<td>2 mo</td>
<td>26-wk AGA premature, necrotizing enterocolitis</td>
<td>Extubation</td>
<td>Clinician preference</td>
<td>Switched to PSV 6 hours prior to extubation</td>
</tr>
<tr>
<td>19</td>
<td>11 yr</td>
<td>Postoperative repair of C-6 fracture quadriplegia from motor vehicle accident</td>
<td>Extubation</td>
<td>Clinician preference</td>
<td>Switched to PSV 5 hours prior to extubation</td>
</tr>
<tr>
<td>20</td>
<td>27 mo</td>
<td>Post Fontan procedure for tricuspid atresia</td>
<td>Extubation</td>
<td>Clinician preference</td>
<td>Switched to SIMV+PSV, 16 hours prior to extubation</td>
</tr>
</tbody>
</table>

*Weaning failure is defined as an intolerance of VSV, extubation failure defined as not extubated from VSV. SIMV+PSV = synchronized intermittent mandatory ventilation plus pressure support ventilation. CHARGE = syndrome including developmental defects of the eye Coloboma, Heart disease, chondrotic Atlanto, Retarded growth and developmental and CNS anomalies, Genital hypoplasia, and Ear anomalies and/or deafness. RV = right ventricle.

Diagnose airway obstruction requiring reintubation. Subsequent extubation attempts from other modes of ventilation for this patient also proved fruitless, and he ultimately required a tracheotomy. Only one patient did not tolerate VSV. This patient had an inconsistent respiratory drive secondary to an evolving neurologic injury. His fluctuating drive resulted in repeated activation of the backup PRVC mode and associated alarm because of apnea. This patient was switched to SIMV until stabilization of the neurologic injury and ventilatory drive, at which time extubation occurred without problems.

Discussion

This is the first published report of the use of VSV for mechanical ventilation in either children or adults. This new mode of ventilation, offered on the Siemens Servo 300 ventilator, is designed to support spontaneously breathing patients on mechanical ventilation. It has been described by some as adaptive pressure support. In this mode of ventilation, VT is used as a feedback control for continuously adjusting the pressure support level. The ventilator initiates VSV by delivering a series of 4 test breaths of incrementally greater pressure synchronized to the patient's inspiratory effort. The delivered VT is measured and respiratory system compliance calculated. The calculated system compliance is used to manipulate the pressure support level until the target VT is delivered. The maximum breath-to-breath pressure change once the target VT is achieved is limited to 3 cm H2O and can range from 0 cm H2O above the set PEEP to 5 cm H2O below the high-pressure alarm limit. Breaths are primarily terminated when inspiratory flow decreases to 5% of the initial peak flow and secondarily when inspiratory flow reaches 80% of the set total cycle time. The control logic of this mode of ventilation is depicted in Figure 1.12

Patients who theoretically may benefit from VSV include those who are awake and ready to wean; those who have an intact ventilatory drive but need airway protection; those who spontaneously breathe but require PEEP, and those being weaned from prolonged ventilatory support. In this mode of ventilation, the patient determines the inspiratory time, flow, and frequency, while the clinician sets a minimum VT goal for the patient to meet. This VT goal is approximated by initially using 75-90% of the VT and respiratory rate that the patient is receiving in his current mode of ventilation and then titrating the goal to patient comfort. The ventilator attempts to deliver the set VT goal at the lowest possible pressure. Indeed, in this series of patients, decreases of PIP and set VT were seen when the ventilator mode was changed to VSV while the same delivered VT was maintained.

Two patients developed upper lobe atelectasis following the change to VSV. On bronchoscopic examination, one of these patients proved to have compression of the left mainstem bronchus by vascular structures. The other required increased PEEP to re-inflate the lobe. This experience suggests that the clinician needs to be aware that the amount of support given to a spontaneously breathing patient with VSV may
be less than that afforded by other modes. This may result in a larger drop in P_{aw} than is desirable, but this can be compensated for by slightly increasing the PEEP in order to sustain the P_{aw} and maintain sufficient lung expansion.

Weaning in this mode of ventilation can occur actively or passively. With active weaning, the clinician gradually decreases the set V_T or V_F goal. When a physiologic spontaneous V_T (ie, 3-6 mL/kg) has been achieved, the patient is extubated. If the patient becomes tachypneic or distressed, the decrease in ventilatory assistance has been too great and the volume goal should be increased. With passive weaning, the ventilator "self-weans" the patient as the patient's muscle strength and respiratory mechanics improve (ie, as the patient generates a larger percentage of each V_T and, consequently, the inspiratory pressure generated by the ventilator decreases. The clinician sees a gradual decrease in PIP and P_{aw}. We have found that the patient typically can be safely extubated when his set V_T is 3-6 mL/kg, PIP ≤ 20 cm H_2O, respiration appears comfortable, and oxygenation is adequate. In our series, PIP, P_{aw}, and set V_T fell as the patient moved toward extubation. All patients who met these goals tolerated extubation well.

One potential advantage of VSV is patient comfort. A commonly encountered problem in the small pediatric patient is failure to achieve synchronization between the ventilator and the infant. In fact, several patients in this series developed acute respiratory distress as SIMV rates were decreased; thereby, halting any further weaning attempts. These difficult-to-wean patients were then switched to VSV and progressed to extubation without difficulty. In the past with other modes of ventilation, sedatives and occasionally muscle relaxants have been used to overcome asynchrony. However, when the patient is ready to be weaned from mechanical ventilation, we have found it sometimes difficult to achieve the right balance between optimal sedation and adequate ventilatory drive. By allowing the infant or child to set his or her own respiratory rate, inspiratory time, and flow (ie, breathing pattern), this mode theoretically should reduce asynchrony between patient and ventilator. In addition, the microprocessor circuitry of this ventilator (Siemens Servo 300) provides a rapid response to a small change in inspiratory flow (ie, flow-triggering). In one trial of the Servo 300,13 the majority of patients were able to trigger the ventilator in the first 40% of contraction of the diaphragm as measured by electromyogram. Therefore, it is responsive to infants and small children with rapid respiratory rates and should decrease the work of breathing.14 These factors may decrease the child's need for sedation and aid in weaning.

Although only a minority of pediatric patients are difficult to wean from mechanical ventilation, some children with respiratory failure are intubated and ventilated for extended periods of time and may require muscle relaxants. These extended periods of decreased muscle use can lead to atrophy and weakness that may result in an even more prolonged weaning period. There is currently no consensus on whether complete muscle rest interspersed with periods of strenuous activity or continuous low levels of respiratory work are more advantageous for training respiratory muscle.15 However, a rapid respiratory rate has been shown to be a sensitive indicator of muscle fatigue,16,17 and can be used as an indicator of excessive work of breathing. VSV may be advantageous in this situation because it allows respiratory muscle work to be varied depending on the clinical status of the patient. In addition, several studies suggest that the change in pressure-volume load characteristics that occurs during PSV enhances endurance conditioning of the diaphragm.8,18 Presumably, these same benefits would be seen with VSV, which has similar pressure-load characteristics.

There are several potential disadvantages to VSV. Our experience suggests that the clinician's "learning curve" for this new mode of ventilation can be steep. Difficulties have been encountered both in deciding on the initial ventilator settings and in clinician comfort with judging readiness for extubation. The former problems have included setting the V_E goal too high or too low, A high V_E and V_T goal drives down the patient's arterial carbon dioxide tension and can cause long respiratory pauses. An initial V_E and V_T goal that is too low can cause the patient to become distressed and tachypneic. These problems, if recognized, are easily corrected by changing the V_E and V_T goal while monitoring the patient's breathing pattern. Another common problem occurs when setting...
the respiratory rate. In VSV, the set respiratory rate serves three functions: (1) with the \(V_{E} \) it is used by the ventilator to determine the minimum \(V_{E} \); (2) it sets the respiratory cycle time and provides a secondary mechanism for inspiratory termination; and (3) it serves as the ventilator rate should the patient become apneic and the backup mode (PRVC) becomes activated. If the minimum respiratory rate is set too high, the \(V_{E} \) goal is also probably too high. If the patient slows his respiratory rate below the minimum rate, the support provided by the ventilator increases to meet the \(V_{E} \) goal. This results in larger \(V_{E} \) interspersed with long pauses. The pauses can exceed the apneic limit of the ventilator and result in default activation of the backup PRVC mode. Therefore, the respiratory rate needs to be set below the lowest rate that the patient is expected to breathe during quiet or resting states.

Another difficulty has been clinician discomfort with judging the patient's readiness for extubation. Although criteria that indicate readiness for extubation in infants have been established (crying vital capacity of >15 mL/kg and a maximum inspiratory pressure of \(\geq 45 \) cm H\(_2\)O), many clinicians continue to rely on their subjective bedside assessment of patient comfort. This mode lends itself well to this type of assessment.

Patients must have a consistent respiratory drive to tolerate VSV. Patients who are heavily sedated or those with impaired neurologic status are not good candidates for VSV. Application in neonates with periodic breathing of the newborn can also be problematic. The neonatal setting on the Servo 300 allows only a 10-second apnea before changing to the backup mode (PRVC). The pediatric setting increases the apnea period to 15 seconds, potentially overcoming this problem.

Based on our experience with this series, we suggest that the clinician aim for 75-90% of the patient's current \(V_{E} \), increase PEEP as needed to keep the \(P_{aw} \) from falling too precipitously, and set the backup rate slightly below the slowest rate at which one would expect the patient to breathe during quiet, resting states. These initial settings may then be adjusted to achieve the respiratory rate and pattern most comfortable for the patient.

The limitations of the retrospective analysis of this case series must be recognized. Care was not delivered by previously established protocol, the total number of patients was small, data were incomplete, no concurrent control patients were available for comparison, and the selection criteria for the use of VSV was solely by provider preference, which may lead to a biased patient population not representative of typical PICU and ICU populations. Despite these limitations, the analysis and reporting of our clinical experience may provide valuable information that can be used to assist further investigations.

Conclusion

Despite the initial challenge of understanding a new mode of ventilation and its appropriate clinical application, VSV has theoretic advantages that may make it a useful mode in selected patients. Potential advantages include a fixed minimum minute ventilation, lower airway pressures, enhanced patient comfort, appropriate respiratory muscle use, and ease of clinical assessment. Although this report shares the limitations of descriptive, retrospective studies, it illustrates that VSV can be successfully used in a subset of the PICU-HICU population. Although clinical experience with VSV is limited, its theoretical advantages suggest that further study of its clinical application is warranted.

ACKNOWLEDGMENTS

The authors thank Susan Bratton MD MPH for her assistance with statistical analysis of the data and review of the manuscript, Debra Taylor RRT for assistance with data collection, and the members of the Department of Respiratory Care for their dedication to excellent patient care.

REFERENCES

Comparison of Two Methods for Securing the Endotracheal Tube in Neonates

Teresa A Volsko RRT and Robert I Chatburn RRT

INTRODUCTION: Securing the uncuffed endotracheal tubes of infants requiring mechanical ventilation is imperative to avoid the complications that often accompany unplanned extubation. We evaluated the effect of two methods of securing the endotracheal tube on the incidence of spontaneous extubation. MATERIALS & METHOD: We prospectively studied the incidence of accidental extubation in 244 infants, meeting predetermined criteria, who were admitted to our Level-2 neonatal intensive care unit. Endotracheal tubes were secured by conventional taping or by an oral fixation device (the Logan Bow, i.e. mucus arch). The device was applied depending on availability. RESULTS: Fewer patients were accidentally extubated with the Logan Bow (21.3% vs 58.7%, p < 0.0001) and there were fewer extubations/100 ventilator days (2.1 vs 3.0). When stratified by weight, the difference in extubation weights was significant only for patients weighing ≤ 1.5 kg. CONCLUSION: The use of the Logan Bow to secure uncuffed endotracheal tubes may reduce the unplanned extubation rate of mechanically ventilated low birthweight infants. [Respir Care 1997;42(3):288-291]

Introduction

Successful management of mechanically ventilated infants depends on the caregivers’ ability to secure and maintain an artificial airway. Accidental or spontaneous extubations interrupt airway patency and may complicate the patient’s course. Adverse patient outcomes, such as laryngospasm, edema of laryngeal structures, aspiration of pooled secretion and/or gastric contents, acute hypoxia, and hypercarbia often can result. Complications arising from repeated spontaneous extubations and subsequent reintubations may include profound hypoxia, acidosis, cardiopulmonary compromise, subglottic stenosis, laryngotracheal ulceration, necrosis, and granuloma. The sequelae of intraventricular hemorrhage and pulmonary hypertension may ensue in conjunction with an hypoxic or acidic state.

Factors associated with spontaneous extubation are varied. Numerous conditions accompanying unplanned extubations including airway anatomic structure, time of day, bedside care, patient position, use of limb restraints, sedation, infant’s size and activity level, amount of oral secretions, and type and integrity of the securing device.

A common denominator, however, is the importance of securing the uncuffed endotracheal tube in order to minimize these negative sequelae. The purpose of this study was to evaluate the effect of two endotracheal tube taping methods on the incidence of spontaneous extubations. We hypothesized that the use of the Logan Bow (small size: Rusch Model 395429, Rusch Co, Duluth GA, and medium size: Storz Model N5958, Storz Instruments, Manchester MO) would reduce the...
incidence of spontaneous extubations in orally intubated infants compared to a conventional taping method.

Materials & Method

We studied a convenience sampling of 244 infants admitted to our Level-II special care nursery who required intubation and mechanical ventilation. Excluded from the study were (1) infants who required limb restraints, sedation, or paralytic drugs that inhibit or restrict activity; (2) those with suspected or confirmed neurologic impairment that prevented purposeful movements; (3) those scheduled for transfer to tertiary care facilities; and/or (4) those requiring nasotracheal intubation or mechanical ventilatory support for < 72 hours or > 30 days.

Infants enrolled in this prospective study had their oral endotracheal tube affixed by one of two methods. The method used to secure the endotracheal tube depended on the availability of the device.

Logan Bow

The Logan Bow (or nuchal arch), an oral fixation device, was described by Budd in 1982 and by Franke in 1992 as an endotracheal tube securing method (Fig. 1). For our study, infants orally intubated and requiring positive pressure ventilation had their oral endotracheal tubes affixed by a Logan Bow appropriate for their size when the device was available. Small-sized Logan Bows were used for infants who weighed ≤ 700 g and medium for those weighing > 700 g.

Conventional Taping Method

If a bow of the proper size was not available, the endotracheal tube was secured to the infant’s face by conventional taping. Prior to the application, 2 strips of adhesive tape, (approximately 1/2” wide and 4” long) were cut. A horizontal slit, three fourths of the length of the strip was made, yielding a Y-shaped piece. The infant’s skin was prepared by thoroughly drying the perinasal and cheek area. The clean, dry areas were then painted with tincture of benzoin. The opening of the Y-shaped adhesive strip was centered around the oral endotracheal tube. The top portion of the strip was affixed to the infant’s upper lip. The bottom or lower portion of the tape was applied to the endotracheal tube in a counterclockwise fashion. The second adhesive strip was aligned against the tube and adhered to the perinasal area similarly. Using a clockwise rotation, the lower portion of the tape strip was wrapped around the infant’s tube (Fig. 2). The patency of the lumen was verified by unobstructed passage of a suction catheter through the tube.

The tape, associated with either method, was changed when loss of adhesive allowed slippage of the tube. Retaping was done at the discretion of the respiratory therapist or nurse.

Statistical Analysis

Patients were grouped by weight range. The percent extubated/group was calculated as the number of patients who had at least one accidental extubation divided by the number of patients in the group. This allowed comparison of extubation data using the Fisher Exact test. One-tailed p values were reported and considered significant at the 0.05 level (2-tailed values are usually estimated by doubling the 1-tailed values).7
A spontaneous extubation was defined as an unplanned dislodgment of the oral endotracheal tube without regard to the precipitating event (eg, extubation during repositioning, routine bedside care, or in conjunction with a therapeutic procedure), but not associated with events that might contribute to clinical deterioration, such as bronchospasm or mucus plugging.

Calculation of percent extubated as described earlier ignores data for patients who had multiple extubations. To include all data, we calculated the total number of extubations/100 ventilator days. However, this index could not be compared statistically.

Results

Data obtained during the 18-month study period are shown in Table 1. There was no statistically significant difference in accidental extubation rates for infants weighing > 1.5 kg. For infant’s weighing 0.5-1.5 kg, the group with the conventional taping had an average accidental extubation rate six times that of the Logan Bow group.

Table 1. Comparison of Outcome of Tube Stabilization Methods, Stratified by Infant Weight

<table>
<thead>
<tr>
<th>Weight Range (kg)</th>
<th>Logan Bow</th>
<th>Adhesive Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total No.</td>
<td>Total Patients</td>
</tr>
<tr>
<td>0.5-1.00</td>
<td>12</td>
<td>89</td>
</tr>
<tr>
<td>1.01-1.50</td>
<td>19</td>
<td>155</td>
</tr>
<tr>
<td>1.51-2.00</td>
<td>19</td>
<td>155</td>
</tr>
<tr>
<td>2.01-2.50</td>
<td>19</td>
<td>155</td>
</tr>
<tr>
<td>2.51-3.00</td>
<td>20</td>
<td>155</td>
</tr>
<tr>
<td>Total Patients</td>
<td>89</td>
<td>155</td>
</tr>
</tbody>
</table>

*Exubations/100 ventilator days with Logan Bow = 2.1, with adhesive tape = 3.0.

Discussion

Spontaneous extubations have been associated with profound complications in infants and children, and devastating consequences have resulted from repeated intubations after spontaneous extubations.

Although various factors contribute to spontaneous extubations among infants, the shortness of the infant’s trachea coupled with the narrow range for optimal endotracheal tube placement particularly facilitate accidental extubations.

The tip of the uncuffed endotracheal tube should lie 2 cm below the vocal cords and 1-2 cm above the carina, which leaves little room for movement without the risk of malposition.

It has been reported that extension of the head by a term infant can withdraw the tube by 3.5 cm and flexion can advance it by 1.8 cm. Therefore, it is imperative that the tube movement associated with head movement and positioning be minimized. A number of fixation methods have been described in the literature.

The method chosen should not interfere with access to the tube and should be easy to apply and remove. Durability of the device is of equal importance. It should ensure the stability of the endotracheal tube in the face of inadvertent traction from head movement, ventilator tubing, or patient activity. Constant exposure to oral secretions reduces the adhesiveness of tape around the tube and can contribute to accidental extubation.

The Logan Bow is among a number of devices reported to circumvent this problem. In our study, an adhesive head sling anchored the device and the oral endotracheal tube. Stability of the artificial airway was provided in the face of traction imposed by the ventilator circuitry and patient movement. In addition, access to the oropharyngeal cavity for nursing care was unobstructed. Gauze pads and temperature probe covers shielded the infant’s face from adhesive tape, minimizing skin irritation while augmenting the ease of device application and removal. The design of the Logan Bow allows the oral endotracheal tube to be secured away from the infant’s mouth and face. This minimizes contact with oral secretions and reduces the risk of tube slippage and subsequent unplanned extubation.

Accidental extubation data are not reported consistently, making it difficult to compare our data with that of other studies. Kleiber and Hummel have written a comprehensive review of spontaneous extubation research spanning 28 years. They found that many of the investigations lacked an operational definition for spontaneous extubation, a mechanism to identify the population studied, and a uniform reporting method. For example, one study reported the rate of spontaneous extubations as the number of extubations/100 intubated infants, while another study compared the number of spontaneous extubations/100 ventilator days. Some studies do not account for the acuteness of the patient’s condition, the duration of intubation, or repeated accidental extubations. Our study follows the suggestions by Hummel and
Kleiber15 in that we specifically defined spontaneous extubations. Our population was identified by weight and duration of mechanical ventilation to include infants in the acute phase of illness rather than the chronic ventilator dependent infants (defined as mechanical ventilation for \(> 30\) days). In addition, we uniformly reported incidence statistics as the number of extubations/100 ventilator days. Intraobserver variation in measurement and reporting can result in bias and misinterpretation of results. The incidence of confusion and misinterpretation of results can be reduced when clinical comparison of uniformly reported data are presented.16

Conclusion

The use of a Logan Bow to secure an uncuffed endotracheal tube may reduce the incidence of unplanned extubations on infants weighing less than 1.5 kg compared to the use of tape alone.

ACKNOWLEDGMENT

We thank Dr Steve Jesse and the respiratory care and nursing staff in the special care nursery at St Elizabeth Health Center, Youngstown, Ohio for their cooperation during this research project.

REFERENCES

Bronchodilator Properties of Ketamine

Hugh S Mathewson MD and Thomas A Davis CRNA MAE

In the late 1950s, certain derivatives of cyclohexylamine were shown to have central depressant properties and to provide considerable analgesia when patients were still awake. The first of these to be introduced clinically was phencyclidine, which produces a feeling of dissociation from the environment and indifference to painful stimuli. This came to be known as dissociative anesthesia. However, emergence delirium and subsequent hallucinatory phenomena were so common that phencyclidine had to be abandoned—it later became a widely used street drug called PCP. Research continued, and after study of many similar derivatives the compound called ketamine was introduced and received official approval.

The principal anesthetic virtue of ketamine is its benign effect on respiration and blood pressure when administered in induction doses, in contrast to the hypotensive effects often seen with thiopental and propofol, the most commonly used induction agents. For patients with unstable circulation, induction can be achieved with less risk. Also, minor procedures that can be performed with the patient awake, such as changing burn dressings, can be safely and less painfully accomplished with dissociative anesthesia. The problems of postoperative psycholyseptic effects (ie, distorted perception, hallucinations, and delusions) remain to some degree, although not nearly to the extent previously encountered with phencyclidine. These untoward actions can be mitigated to some degree by premedication with benzodiazepines (diazepam, midazolam), but the risk of “bad trips” has placed ketamine in a questionable position as a routine anesthetic induction agent.

In 1971 Bovill et al reported that airway resistance is measurably decreased during ketamine induction, and bronchospasm may be abolished. Pulmonary vascular resistance is not altered, and hypoxic pulmonary vasoconstriction is not inhibited. With these observations in mind Corssen et al (1972) recommended that ketamine be used in the anesthetic management of asthmatic patients. Although this has remained a landmark article, anesthesiologists were slow to adopt this regime for fear of psychologic aftereffects.

It had long been recognized, however, that ketamine-induced psychedelic or psycholyseptic effects were less prone to occur in children than in adults. Much of the recent study of ketamine as a bronchodilator is concerned with the treatment of asthma in infants and children. In the past decade, ketamine has received increasing recognition as an effective agent for terminating severe episodes of asthma, particularly in cases where conventional therapy has failed. A study of particular interest in respiratory care showed that ketamine infusions tend to reduce bronchospasm in patients on mechanical ventilation.

The mechanism by which ketamine decreases airway resistance is discussed in a recent review by Nehama et al. One hypothesis is that ketamine increases synaptic catecholamine levels by blocking the reuptake of norepinephrine into presynaptic sympathetic neurons. It has been shown that the increase in free norepinephrine parallels the peak bronchodilatory effect of ketamine and that this effect can be diminished by β-adrenergic blockade. Ketamine also inhibits vagal outflow and may exert an antiinflammatory effect on bronchial smooth muscle, although doses in the greater-than-normal range are required to demonstrate this effect.

Although clinical references have been sporadic since 1971, L’Hommedieu reported 4 cases in 1987 in which intravenous ketamine was used for emergency intubation during status asthmaticus; the patients’ ages ranged from 15 months to 14 years. Nehama described the successful use of a ketamine infusion for an 8-month-old infant for whom the prescribed treatment of status asthmaticus had failed. These favorable reports portend a wider use of the drug; however, there are possible untoward effects unrelated to the psychological hazards. Ketamine increases upper airway reflexes and can cause increased secretions, cough, and laryngospasm. It has been recommended that the drug be given with a vagolytic agent and that a neuromuscular blocker be given if intubation is to be performed. The administration of ketamine by aerosol has been suggested, but no reports of clinical studies have yet appeared.

Howton et al (1996) performed a randomized, double-blind, placebo-controlled study of intravenous ketamine for
treatment of acute asthma in the emergency department. An initial 0.2 mg/kg bolus of ketamine was given over a 5-minute period, followed by an infusion of 0.5 mg/kg/h. Of the first 9 patients, 6 received ketamine, and 3 became dysphoric. At this point, the bolus dose was reduced to 0.1 mg/kg for the remaining 44 cases studied. The conclusion was that, in doses low enough to avoid dysphoric reactions, the bronchodilator effect of ketamine was no greater than that obtained with standard therapy. Although there was a slight increase in patient satisfaction in the ketamine group, no clinical benefit in terms of hospital admission rate was noted.

Because the incidence of dysphoria is dose-related, studies in which patients were allowed to remain awake have tended to be conducted with lower doses of ketamine. This indicates that the therapeutic window is uncomfortably small and that titrating the drug to achieve bronchodilatation may be difficult in some cases.

No new congeners of ketamine have been advanced for clinical study in recent years. However, the ketamine molecule contains a chiral center, allowing the formation of 2 enantiomers, designated R(−) and S(+). Solutions of the drug available in the U.S.A. contain the racemic mixture. Researches have been undertaken to determine whether one isomer is superior enough therapeutically to justify its separation and marketing in pure form. The S(+) isomer reportedly has about 3 times the analgesic and anesthetic potency of the R(−) derivative and is about 20% shorter acting. The relative bronchodilator actions of the isomers are yet undetermined. A recent experimental study indicates that they are equally spasmyloytic against histamine-induced contraction of tracheal smooth muscle.18

REFERENCES

A Patient in Status Asthmaticus: What Does the Waveform Confirm?

Robert Harwood MSA RRT, Lynda Thomas Goodfellow MBA RRT, DiAnn Larson RRT, and Robert Aranson MD

Case Summary

A 32-year-old man with a history of severe asthma and bronchitis presented to the emergency room (ER) with shortness of breath, sinus congestion, and sputum production that had increased over the previous 2 weeks. Home medications had included albuterol by metered dose inhaler (MDI), 2 puffs 4 times daily and as needed; beclomethasone dipropionate by MDI, 2 puffs twice daily; theophylline 300 mg twice daily; and guaifenesin 2 tablets by mouth twice daily and as needed. He denied use of alcohol and tobacco.

On physical examination, the patient was found to be conscious and oriented to time, place, and person. His heart rate was regular at 136 beats/min, blood pressure 146/96 mm Hg with no pulsus paradoxus, and respiratory rate 30 breaths/min. His breathing was labored, and he was using accessory muscles. Cardiac auscultation revealed no murmurs, gallops, or rubs. Auscultation of the chest revealed bilateral inspiratory and expiratory wheezes. There was no clubbing of the fingers or toes or edema of the extremities.

In the ER, the patient was treated with albuterol by small volume nebulizer, I.V. (intravenous) aminophylline, and oxygen by nasal cannula at 4 L/min to maintain oxyhemoglobin saturation by pulse oximetry > 90%. Within 2 hours, 2 additional albuterol treatments were administered by nebulizer with no improvement. The patient was admitted and transferred to the intensive care unit. During the next 6 hours, the patient deteriorated and required an increase in the fractional concentration of delivered oxygen (FiO₂) to 1.0 and the administration of methylprednisolone. Arterial blood gas analysis showed pH 7.26, Paco₂ 76 torr [10.13 kPa], Paco₂ 197 torr [26.2 kPa], HCO₃⁻ 35 mEq/L. Base Excess +5 mEq/L. At this time, the patient was sedated, orally intubated with an 8.0-mm-ID endotracheal tube (ETT), and placed on a volume ventilator with the settings: synchronized intermittent mandatory ventilation (SIMV), frequency 12/min, tidal volume (VT) 800 mL, PEEP 0.40; pressure support 10 cm H₂O; positive end-expiratory pressure (extrinsic PEEP, or PEEPext) 0; peak flow 55 L/min. Following institution of mechanical ventilation, albuterol was nebulized continuously (10 mg/hr). Because of restlessness, the patient was sedated with I.V. lorazepam and propofol. By the second day of mechanical ventilation, the patient required an increase in oxygen fraction to 0.80. PEEP of 10 cm H₂O was added, but no other changes were made in ventilator settings.

Part I

On chest radiograph, the lungs appeared hyperinflated. Tracings were obtained with a free-standing monitor (BiCore, Fig. 1.).

Mr Harwood and Ms Goodfellow are faculty members of the Cardiopulmonary Care Sciences Department at Georgia State University. Ms Larson is Educational Coordinator, Respiratory Care Department, Dekalb Medical Center, and Dr Aranson is on the faculty of Emory University School of Medicine, Director of the Medical Intensive Care Unit & Respiratory Department, Grady Memorial Hospital, and Medical Director, Cardiopulmonary Care Sciences Department, Georgia State University—Atlanta, Georgia.

Reprints & Correspondence: Robert Harwood MSA RRT, Assistant Professor, Cardiopulmonary Care Sciences, Georgia State University, University Plaza, Atlanta GA 30303-3083.
How would you answer these questions?

Part 2

The waveforms in Figure 1 were analyzed and the ventilator adjusted. Two additional waveforms were obtained and are shown in Figure 2.

A

B

Fig. 2. A. Waveforms resulting from adjustment of the ventilator. B. Waveforms resulting from additional adjustment of the ventilator.

How would you answer these questions?

What adjustment of ventilator settings would account for the changes seen in Tracings A and B of Figure 2?

Why did the ventilator adjustment change the flow and VT curve?
Answers, Part 1

Vt Waveform. Air trapping is the probable cause for the failure of the VT waveform to return to baseline. The expiratory volume is less than the inspiratory volume. The difference between the two volumes is the trapped volume.

Auto-PEEP has developed. The end-expiratory flow does not fall to zero (ie, the flow waveform does not return to baseline) before the next positive pressure breath is delivered. Auto-PEEP (or intrinsic PEEP, PEEPi) develops when the expiratory time (TE) is too short to allow complete emptying of the lungs.

Answers, Part 2

The flow setting was increased as shown in Tracing A (from 50 L/min to 100 L/min) and further increased in Tracing B (to 120 L/min). Note in Tracing A that the increase in flow reduced the hyperinflation and PEEPi. In Tracing B, the hyperinflation and PEEPi have been eliminated.

Increasing the flow reduced the inspiratory time (T1) and increased the TE, allowing a longer time for air to escape the lung. The reduction in trapped air is seen in the return of the flow curve to baseline before the next breath is delivered and in the return of the VT curve to baseline. Expiratory volume now equals inspiratory volume on the VT tracing.

Discussion

Auto-PEEP, also called occult PEEPi or intrinsic PEEP (PEEPi), is an unintentional end-expiratory pressure developed at the alveolar level as a result of incomplete emptying of the lung. It has been estimated that PEEPi occurs in 39% of mechanically ventilated patients. Mechanically ventilated patients at high risk for developing PEEP include those on controlled ventilation receiving minute ventilation of >10 L/hr, those over 60 years of age, and those intubated for respiratory or cardiopulmonary complications.1 PEEPi may occur in patients with or without dynamic airflow limitation (ie, with or without obstructive lung disease) if TE is too short.

Mechanically ventilated patients, especially those with chronic obstructive pulmonary disease, can have dynamic air-flow obstruction leading to PEEPi, because of small-airway collapse. Small-airway collapse, bronchial narrowing (as in asthma), and high minute ventilation lead to dynamic hyperinflation. An inspiratory threshold then develops as a result of PEEPi. During spontaneous effort to trigger the ventilator, the patient must ‘pull through’ that level of PEEPi, and below the set ventilator-sensitivity level to initiate a breath. This makes triggering the ventilator difficult and increases the work of breathing.

For adequate emptying of the lung to occur, a TE equal to 3 or 4 respiratory time constants is required (time constant = resistance × compliance). In the normal lung, expiratory driving forces are greater and expiratory resistance is less than in the obstructed lung with increased compliance, providing a lesser respiratory time constant and allowing a shorter TE. Furthermore, patients may have a limited time for expiration because of high minute ventilation due to burns, sepsis, or large physiologic dead space.4

PEEPi may also develop in relatively normal airways. Components of the patient-ventilator system (the endotracheal tube, PEEPi valve, and exhalation valve) add resistance and retard expiration. Total expiratory resistance across airways, the endotracheal tube, and the exhalation valve may be >10 cm H2O · s · L−1 (normal <4 cm H2O · s · L−1). Thus, PEEPi can develop in these patients with minute ventilation >20 L/min.

Patients who actively exhale at end-exhalation have PEEPi present (without lung distension).2 Active exhalation from muscle activity results in increased alveolar pressure much like a patient who performs a forced expiratory volume maneuver. The increased alveolar pressure creates a continuous flow that lasts throughout exhalation.

Detection of PEEPi is difficult. PEEPi is associated with wheezing and rhonchi as is the presence of flow at end-expiration (the flow curve does not return to baseline before the next breath).2 During volume-oriented mechanical ventilation, the inspiratory waveform is determined by the ventilator setting. Gas flow is best measured at the Y-piece of the ventilator circuit with a calibrated pneumotachometer of suitable range.7 PEEPi is present whenever end-expiratory gas flow does not fall to zero (ie, the pressure difference between alveoli and the airway threshold maintains expiratory flow). Although the presence of PEEPi can be determined from the expiratory flow tracing, the amount of PEEPi cannot be determined.

PEEPi can be measured at the bedside with the patient passive throughout exhalation. Pepe and Marin2 first described this method, which requires occlusion of the expiratory valve. The time between ventilator cycles is determined, the rate is reduced to zero, and the expiratory valve is occluded when the next breath would have been delivered. If PEEPi is present, it will be seen on the ventilator manometer when airway pressure equilibrates. Some new-generation ventilators provide the convenience of PEEPi measurement by an expiratory hold button, but this convenience may be outweighed by the difficulty in obtaining an accurate measurement because of bias flow and the design of the expiration valve.6 Madsen and colleagues6 compared PEEPi determination by the expiratory hold function to clamping-transducing measurement using low-compressible-volume circuits (1.8 mL/cm H2O) and found no significant difference between the two. It should be noted that the expiratory hold of 4 seconds used in the Madsen et al. study6 requires that a patient be sedated and paralyzed.

Esophageal pressure (Pes) must be known to determine PEEPi in the spontaneously breathing patient, and Pes and lung compliance are needed to quantify work of breathing and patient effort during spontaneous breathing. Pes provides a reliable
method for determining the level of PEEP needed to counterbalance PEEP, in the patient breathing spontaneously during positive pressure ventilation. Knowledge of PEs in the patient who is not breathing spontaneously allows computation of the chest-wall compliance and facilitates interpretation of central venous and pulmonary artery pressure.

A challenge to respiratory therapists in the ICU is accurate measurement of static compliance (Cst) in patients who are being mechanically ventilated. Calculation requires that the change in volume be divided by plateau pressure minus PEEP. The measurement is accurate if the elastic recoil of the lung minus PEEP is zero. In other words, if there is no PEEP, subtraction of PEEP provides a zero baseline and an accurate measurement of Cst. If PEEP is present but not subtracted, then the calculated Cst underestimates the correct value.

Another critical issue in the presence of PEEP is the accuracy of pulmonary capillary wedge pressures (PCWPs). Intrapulmonary vascular pressure measurements are affected by alterations in transmural pressure (the force exerted against the inner surface of the wall of a blood vessel relative to ambient pressure). Increases in intrapleural pressure decrease vascular transmural pressure and dampen vascular pressure. As a result, actual effective PCWP is equal to the measured PCWP minus the Pes measured at end-expiration. In the spontaneously breathing patient, this difference is usually small, but in mechanically ventilated patients, the difference can be appreciable because of the effects of peak airway pressure. PEEP, inspiratory-expiratory time ratios, and mean airway pressure.

Proper placement of the esophageal balloon is important for accurate readings. In most adults, the tip of the balloon should be about 35-40 cm from the nares. In the spontaneously breathing patient, proper placement can be confirmed by observing Pes and airway pressure changes. If the catheter is properly placed, inspiration against an occluded airway results in simultaneous changes in airway pressure and Pes. Maintaining the patient in an upright position provides the best agreement between pressures; whereas, the poorest position is supine. In the supine patient who is not breathing spontaneously, observation of atrial contractions in the Pes trace (Fig. 1) helps ensure proper placement. The incorporation of the esophageal balloon into the nasogastric tube facilitates regular measurement of Pes.

PEEP determination with an esophageal balloon requires measurement of Pes. With inspiration, a slight drop normally occurs before airway pressure and flow increase. Patients with PEEP, however, have a greater drop in Pes before there is a response in flow or pressure (Fig. 1). The difference between baseline Pes and the Pes required to generate flow or alter airway pressure is equal to PEEP.

The techniques used to minimize PEEP are listed in Table 1. Our patient was receiving aggressive bronchodilator therapy (continuously aerosolized albuterol and I.V. aminophylline), I.V. methylprednisolone, and secretion removal by endotracheal suctioning. Following inspection of the chest radiograph and the monitor study showing dynamic hyperinflation and PEEP, the inspiratory flow was increased until PEEP, and hyperinflation were eliminated. PEEP increases as Tp decreases. Therefore, increasing inspiratory flow to allow maximal Tp reduces PEEP. The increased Tp allows more complete alveolar emptying despite dynamic airway compression. However, increased inspiratory flow should be used with caution in patients with bronchospasm, and such patients must be closely monitored. Studies have shown that increasing flow can result in increases in Psco2 and decreases in Paco2 due to maldistribution of inspired gas. Increasing flow to minimize PEEP is appropriate as long as ventilation and oxygenation are not sacrificed. If peak inspiratory pressure rises as flow is increased and ventilation is impaired, other techniques for minimizing PEEP should be used. In our patient, ventilation and oxygenation remained unchanged and peak pressure rose only from 37 cm H2O [3.62 kPA] to 41 cm H2O [4.02 kPA]. Other techniques include reducing minute ventilation consistent with an acceptable pH and attenuating ventilatory drive by treating and correcting fever, agitation, and metabolic acidosis.

<table>
<thead>
<tr>
<th>Table 1. Clinical Techniques for Minimizing Auto-PEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease airflow obstruction by</td>
</tr>
<tr>
<td>Aggressive bronchodilation therapy</td>
</tr>
<tr>
<td>Secretion removal</td>
</tr>
<tr>
<td>Increasing the size of the endotracheal tube</td>
</tr>
<tr>
<td>Chest physical therapy</td>
</tr>
<tr>
<td>Inhalation anesthesia</td>
</tr>
<tr>
<td>Modify ventilatory pattern by</td>
</tr>
<tr>
<td>Minimizing inspiratory time in relation to total breathing cycle time by</td>
</tr>
<tr>
<td>Increasing inspiratory flow rate</td>
</tr>
<tr>
<td>Substituting a low-compressible volume circuit</td>
</tr>
<tr>
<td>Prolong expiratory time by</td>
</tr>
<tr>
<td>Decreasing rate</td>
</tr>
<tr>
<td>Increasing tidal volume</td>
</tr>
<tr>
<td>Use SIMV at a lower rate</td>
</tr>
<tr>
<td>Apply PEEP/CPAP</td>
</tr>
<tr>
<td>Normalize pH by</td>
</tr>
<tr>
<td>Administering NaHCO3 during metabolic acidosis</td>
</tr>
<tr>
<td>Allowing increase in Psco2 to 50-60 mm Hg range by decreasing rate and normalizing pH</td>
</tr>
<tr>
<td>Avoiding purposeful hyperventilation</td>
</tr>
</tbody>
</table>

Adapted from reference 6 and 8 with permission.

In our patient, PEEP was not increased above 10 cm H2O because of the potential for hemodynamic compromise. The hemodynamic consequences of PEEP, and PEEP, are the same. Intrathoracic pressure remains positive in the obstructed, compliant lung for a longer period of time, with a consequent rise in mean pressure. The compliant lung transmits alveolar pressure to intrathoracic vessels and, thereby, decreases venous return and cardiac output. Tobin and Lodato point out that
PEEP$_c$ should be used cautiously in patients with airway obstruction. PEEP$_c$ may reduce the work of breathing but does nothing to reduce hyperinflation. Maneuvers that help reduce mean intrathoracic pressure and the hemodynamic effects of PEEP$_c$ are directed toward reducing airflow obstruction.

In Summary

The patient was admitted for severe asthma and bronchitis, with complaints of increased shortness of breath, sinus congestion, and sputum production over a 2-week period. In the emergency room, treatment was begun with aerosolized albuterol, I.V. aminophylline, and oxygen. Over the next 6 hours, the patient deteriorated and required 100% oxygen and I.V. methylprednisolone. Further deterioration led to intubation and mechanical ventilation. A chest radiograph showed hyperinflation and a waveform study revealed hyperinflation and PEEP$_c$. An increase in ventilator inspiratory flow from 50 to 100 L/min resulted in decreases in PEEP$_c$ and hyperinflation. The inspiratory flow was then increased to 120 L/min, which eliminated hyperinflation and PEEP$_c$ without altering ventilation and oxygenation. This case illustrates the effects of altering inspiratory flow on dynamic hyperinflation and PEEP$_c$ in a mechanically ventilated patient with asthma and bronchitis. The patient responded to aggressive management, mechanical ventilation was discontinued on Day 8, and the patient was subsequently discharged.

REFERENCES

Getting your article published is easier than you think!

RESPIRATORY CARE welcomes original manuscripts related to respiratory care and provides editorial consultation at any stage of planning or writing. Instructions and related materials are available. See the Manuscript Preparation Guide in this issue or write to:

RESPIRATORY CARE
11030 Ables Lane
Dallas, Texas 75229-4593
(972) 243-2272 or fax (972) 484-6010
Progressive Respiratory Failure, Toxic Delirium, and Shock in a 47-Year-Old Man

Digpal Chauhan MD and Julie Johnson RRT

Case Summary

History

A 47-year-old divorced, white man was admitted with the chief complaints of cough that was mostly nonproductive and fever and chills for the 2 weeks before admission. Sputum was scant and whitish. The patient had experienced no hemoptysis, pleuritic chest pain, or dyspnea on exertion, but he had sustained a 30-lb weight loss over a 3-month period. He had not experienced headache or sore throat, denied tick bite and recent rash, travel, or the acquisition of new pets. He had lived in Kansas and Missouri for the last few years. Nothing in his history suggested bronchial asthma, pulmonary tuberculosis, or cystic fibrosis. The patient had a smoking index of 60 pack-years but had recently quit. He had abused ethanol in the past but had never used intravenous drugs, required a blood transfusion, or engaged in homosexual acts. He took no medications.

Physical Examination

The patient appeared to be debilitated and chronically ill. His respiratory rate was 28/min, temperature 102° F, height 74.5 in., weight 131.8 lb (ideal weight 195 lb), pulse 112 beats/min, and blood pressure 109/82. There was no periodontitis, adenopathy, digital clubbing, or stiffness of the neck. The patient was alert and oriented to time and place but unable to name the current President or Vice-President. Auscultation revealed a soft S3 heart sound without murmur or friction rub. The electrocardiogram revealed sinus tachycardia, left-axis deviation, and left anterior hemiblock and QS pattern in Leads V1-V3, suggesting an old anteroseptal myocardial infarction.

The results of laboratory tests, including arterial blood gas analysis with the patient receiving 4 L/min of oxygen by nasal cannula, are shown in Table 1. The chest radiograph is shown in Figure 1. Following the initial examination and testing, the patient deteriorated rapidly and required intubation and mechanical ventilation.

Table 1. Laboratory Findings in a 47-Year-Old Man Presenting with Weight Loss, Nonproductive Cough, and Chills and Fever

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test Results</th>
<th>Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit</td>
<td>44%</td>
<td>38-49%</td>
</tr>
<tr>
<td>WBC *</td>
<td>7,100 cells/mm³</td>
<td>4,000-10,000 cells/mm³</td>
</tr>
<tr>
<td>& no lymphocytes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGOT</td>
<td>165 IU/L</td>
<td>8-42 IU/L</td>
</tr>
<tr>
<td>BUN</td>
<td>22.5 mg/dL</td>
<td>5-10 mg/dL</td>
</tr>
<tr>
<td>Serum albumin</td>
<td>2.7 g/dL</td>
<td>3.5-4.9 g/dL</td>
</tr>
<tr>
<td>Serum creatinine</td>
<td>1.2 mg/dL</td>
<td>0.5-1.1 mg/dL</td>
</tr>
<tr>
<td>Serum sodium</td>
<td>124 mmol/L</td>
<td>136-144</td>
</tr>
<tr>
<td>Serum phosphorus</td>
<td>2.5 mmol/L</td>
<td>2.6-4.9 mmol/L</td>
</tr>
<tr>
<td>CPK</td>
<td>elevated</td>
<td>—</td>
</tr>
<tr>
<td>CPKII</td>
<td>100%</td>
<td>—</td>
</tr>
<tr>
<td>pH</td>
<td>7.55</td>
<td>7.36-7.44</td>
</tr>
<tr>
<td>Bicarbonate (HCO₃⁻)</td>
<td>22.5 mEq/L</td>
<td>24-28 mEq/L</td>
</tr>
<tr>
<td>PₐCO₂</td>
<td>25 torr⁷</td>
<td>36-44 torr</td>
</tr>
<tr>
<td>PₐO₂</td>
<td>70 torr, A-aDₐO₂ = 194 torr normal A-aDₐO₂ on 4L/min O₂ = 125 torr</td>
<td></td>
</tr>
<tr>
<td>SₐO₂</td>
<td>96.2%</td>
<td>—</td>
</tr>
</tbody>
</table>

* WBC = White blood cell count; SGOT = serum glutamic oxaloacetic transaminase; BUN = blood urea nitrogen; CPK = creatine phosphokinase; CPKII = creatine phosphokinase isoenzyme; MM = skeletal muscle.
Indicates acute respiratory alkalosis.

Dr Chauhan is Chief of Pulmonary, Director of ICU & Respiratory Therapy, and Clinical Assistant Professor of Medicine, Kansas University Medical Center, Kansas City, Kansas. Dr Chauhan is a staff physician and Ms Johnson is supervisor of Respiratory Therapy.—Dwight David Eisenhower VA Medical Center, Leavenworth, Kansas.

Reprints & Correspondence: Digpal Chauhan MD, DDE VA Medical Center, 4101 South 4th St, Leavenworth KS 66048

Patricia A Doorley MS RRT and Charles G Durbin Jr MD, Section Editors

Respiratory Care • March '97 Vol 42 No 3
How would you answer these questions?

What abnormalities are seen in Figure 1?

What diagnoses should be considered, given the history, results of physical examination, and laboratory and radiographic findings?

What other diagnostic procedures and therapeutic actions do you suggest?

Answers and Discussion on Page 302
Radiographic Findings. The chest radiograph reveals hyperinflation and multiple areas of alveolar consolidation in both lower lobes and in the midzone of the left lung field with no evidence of pleural effusion.

Differential Diagnosis. Possible diagnoses to account for the results of testing, examination, and the chest film include pneumococcal pneumonia, viral pneumonia, pneumocystis pneumonia, fungal pneumonia, HIV infection, and lymphoma (lymphomatoid granulomatosis).

Further Tests & Therapy. Positive identification of the causal organism is imperative. Sputum studies, bronchoscopy, and bronchoalveolar lavage may aid the identification.

Clinical Course

The patient’s condition worsened rapidly. He was treated initially and empirically for legionella pneumonia with azithromycin and intravenous (I.V.) trimethoprim-sulfamethoxazole. Deterioration continued and the patient became confused, markedly hypoxic, and tachycardic.

In order to establish positive identification of the causal organism, sputum was cultured and stained with direct fluorescent antibody (DFA) and bronchoscopy was performed. Sputum cultures grew only normal flora, but DFA staining was positive for Legionella pneumophila. Special stains of bronchial washings were negative for tuberculosis and pneumocystis but grew 8 colonies of L. pneumophila. Bronchoscopy revealed tracheobronchitis and frothy secretions. Bronchial washings and viral cultures were also negative. Cerebrospinal fluid (CSF) studies were negative. CD-4 cell count was 169, and the results of human immunodeficiency virus testing were negative. Computerized tomography revealed mild cortical atrophy. Titers for Legionella spp during the acute illness were positive at 1:64. The patient did not return for convalescent titers.

The patient required mechanical ventilation for 6 days and exhibited sinus tachycardia with supraventricular tachycardia for the first 3 days. The supraventricular tachycardia responded temporarily to adenosine. Dopamine was required for several days to sustain adequate blood pressure. The patient was treated for 10 days with azithromycin, 14 days with erythromycin (including 7 days of I.V. infusion), 14 days of ciprofloxacin (including 7 days of I.V. infusion), and 7 days of doxycycline. The patient was discharged on Day 17. On subsequent return to the chest clinic, he was found to be doing well and to have regained his weight.

Discussion

This patient sustained septic shock, respiratory failure, myocardial depression, encephalopathy, and rhabdomyolysis (as reflected by the elevated CPK) as a consequence of infection with L. pneumophila. A combination of antibiotics was required to control the infection. Questioning revealed the presence of an old air conditioner at his home, which may have been the source of the legionella although surveillance cultures could not be obtained.

Epidemiology

Legionnaire’s disease (LD) was first recognized in 1976 in Philadelphia when 34 deaths from pneumonia occurred among the conventioners. Legionella is ubiquitous worldwide in the water ecosystem and may account for 0.5-5.0% of pneumonia in adults. Natural reservoirs include lakes, ponds, and streams, but potable water sources, particularly plumbing systems in institutions and air conditioning cooling towers, appear to be reservoirs as well. Shower heads, faucets, drinking fountains, whirlpool baths, sprinkler systems, and landscape fountains may be sources as may be room humidifiers and some types of respiratory therapy equipment. Therefore, tap water should not be used for rinsing nebulizers, tubing, or humidifiers. Some cases of nosocomial LD may be due to microaspiration of legionella-contaminated water, associated with nasogastric tube use. The incubation periods for LD is 2-10 days, major risk factors for LD include renal dialysis, renal transplantation, malignancy, immunosuppression, smoking, chronic ethanol abuse, and diabetes.

Microbiology

Legionella spp are weak-staining Gram-negative bacilli that measure from 0.5 to 0.7 μ in width × 2 to 3 μ in length. They are not usually seen on Gram-stained sputum. Special media (buffered charcoal yeast extract) and growth conditions are required for culture. Legionella are slow growing and require 3-5 days for isolation. Within the genus, at least 22 species have been identified, but L. pneumophila accounts for more than 95% of cases of LD. In immunocompromised hosts, L. micdadei is the usual pathogen and responsible for the Pittsburgh pneumonia.

Clinical Presentation

The clinical syndrome of LD includes nonproductive cough, high-grade fever with multiple rigors, pulse-temperature dissociation, diarrhea, myalgia, confusion and obtundation, hyponatremia, hypophosphatemia, and abnormal liver function. The sputum may be blood-streaked or purulent. Chest radiographs are variable, showing unilateral or bilateral alveolar consolidation or patchy nonsegmental infiltrates. Cavitation and pleural effusions are not uncommon. One feature of LD is the tendency for radiologic progression despite appropriate antibiotics. Radiologic clearing is slow.
Disease Confirmation

Diagnosis is confirmed establishing the presence of antigens, antibodies, or positive cultures. DFA is an excellent method for detection of *L. pneumophila* in sputum, tissue, and body fluids but requires well-qualified laboratory personnel. DNA probe test is almost as accurate as DFA and does not require a high level of technical skill and is preferred in high-volume laboratories. The probe detects infections caused by all *Legionella* spp. The diagnosis can be confirmed by detection of *L. pneumophila* antigen in the urine. This finding is 80-99% sensitive and 99% specific. Antibody estimation can be made from acute and convalescent titers. Positive cultures are 100% specific and can be obtained from sputum and lung tissue. Polymerase chain reaction for legionella DNA looks promising.

Antibiotic Therapy

Although azithromycin is more active against intracellular legionella, high-dose I.V. erythromycin (1 g every 6 h) is still the first-line drug in critically ill patients. Rifampin is a good addition to erythromycin or doxycycline but should not be used alone. Fluoroquinolone is also a good alternative therapy. Some patients will need a combination of all the drugs to salvage them (Table 2), even when drug treatment is begun early in the hospitalization.

ACKNOWLEDGMENTS

The authors thank Gloria Madrid for her secretarial assistance and Art Swieca for his pictorial support.

Table 2. Drug Therapy for Legionnaire’s Disease

<table>
<thead>
<tr>
<th>Category</th>
<th>Drug(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrolides/Azalides</td>
<td>erythromycin (± rifampin)</td>
</tr>
<tr>
<td></td>
<td>azithromycin</td>
</tr>
<tr>
<td></td>
<td>clarithromycin</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>ciprofloxacin</td>
</tr>
<tr>
<td></td>
<td>ofloxacin</td>
</tr>
<tr>
<td>Rifampin</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>doxycycline</td>
</tr>
<tr>
<td></td>
<td>minocycline</td>
</tr>
<tr>
<td>Sulfonamide</td>
<td>trimethoprim-sulfamethoxazole (± rifampin)</td>
</tr>
</tbody>
</table>

REFERENCES

Sound Images, Inc. Audio Tape Order Form

POST-CONVENTION SPECIALS

<table>
<thead>
<tr>
<th>Price per Audio Tape</th>
<th>Storage Album</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9.00</td>
<td>$7.00</td>
</tr>
</tbody>
</table>

- Any 12 tapes in 1 FREE Album: $99.00 (Save $16.00)
- Any 24 tapes in 2 FREE Albums: $198.00 (Save $32.00)
- Any 36 tapes in 3 FREE Albums: $297.00 (Save $48.00)

Missed the AARC 42nd International Convention & Exhibition in San Diego?

Here is your chance to acquire the valuable information that was offered by ordering audio tapes of the actual programming. You can fax, mail or call your order directly to Sound Images.

Please allow 21 days for delivery.

Sunday, November 3

- **AARC96-001** Keynote Address: The Future of Healthcare
 Organization: J. Goldsmith

- **AARC96-003** Definition, Epidemiology, Pathophysiology, and Diagnosis
 J. Stoller

- **AARC96-004** Sleep, Nutrition, and Air Travel
 B. Tiep

- **AARC96-005** Pharmacotherapy of COPD
 I. Ziment

- **AARC96-006** Oxygen Therapy in COPD
 B. Tiep

- **AARC96-007** Inpatient Management
 D. Hees

- **AARC96-008** Outpatient Management and Rehabilitation
 A. Ries

- **AARC96-009** The Status of Respiratory Care: A National View
 W. Dubbs

- **AARC96-010** A Medical Director's Perspectives on Managed Care: Impact for the RCP
 D. Burns

- **AARC96-011** Patient-Driven Protocols: Development and Implementation
 J. Phillips-Clar

- **AARC96-012** Managing the Patient-Driven Protocols Program Using an Information System
 R. Ford

- **AARC96-013** Data-Driven Restructuring: Using Information
 R. Ford

- **AARC96-014** What's Next: Take Home Messages
 D. Burns

- **AARC96-015** Professional Opportunities for RCPs in Post Acute Care
 L. Hyatt

- **AARC96-016** Understanding Subacute Care: One Provider's Perspective
 B. Darby

- **AARC96-017** Making the Transition from Acute to Subacute Care: What Works? What Doesn't Work?
 B. Darby

- **AARC96-018** Current Governmental Initiatives and Their Impact on Subacute Care
 C. Best

- **AARC96-019** Gathering Outcomes Data for Multidisciplinary Ancillary Services in Subacute Care
 C. Lux

- **AARC96-020** Five Things I Learned This Year About: Hospital Restructuring... Using the Newest Generation of ICU Ventilators
 K. Shrank, R. Brazson

- **AARC96-022** Five Things I Learned This Year About: Nitric Oxide
 R. Ruz, J. Lund

- **AARC96-024** Five Things I Learned This Year About Diagnostics in the Managed Care Environment
 S. Blonskine

Monday, November 4

- **AARC96-027** How Does PEEP Really Work?
 L. Gattinone

- **AARC96-028** Neonatal and Pediatric Airway Reconstruction: Procedural and Post-operative Management
 A. Sed

- **AARC96-029** Cervical Spinal Cord Injury
 J. Lace

- **AARC96-033** The National Lung Health Education Program: A Status Report
 T. Petty

- **AARC96-034** Program Overview: Today's Healthcare Industry
 S. Giondano, R. Donker

- **AARC96-035** A Vision for a Healthier America
 M. Guadry

- **AARC96-036** The Pew Commission: A Challenge to the Respiratory Care Profession
 G. Filerman

- **AARC96-037** Today's RCP: Do We Know What's Going On?: Are We Really Changing?
 K. Shrank

- **AARC96-038** Protocols Used in Transport
 K. Adams

- **AARC96-039** How Safe is Transport
 J. Focht

- **AARC96-040** Equipment Used in Long-Term Oxygen Therapy
 A. King

- **AARC96-041** CPAP, BIPAP, BIPO2, VPAP: Making Sense of Available Devices and Options
 A. Saposnick

- **AARC96-042** Home Care Ventilators: A Critical Review of Current Models and Options
 R. Ruz

- **AARC96-043** Ventilatory Strategies in the Difficult-to-Wean Patient
 N. MacIntyre

- **AARC96-044** Getting Rid of the Endotracheal Tube
 C. Darby, Jr.

- **AARC96-045** When Should Difficult Weaning Be Done?, N. MacIntyre

- **AARC96-046** Complications Resulting from Inadequate Humidification
 R. Brazson

- **AARC96-047** Devices and Techniques Used to Increase Airway Humidity in Intubated Patients
 R. Campbell

- **AARC96-048** How Much? How Often? - The San Diego Study
 A. Ries

- **AARC96-049** Can You Say "Quality of Life" and Prove It?
 G. Lawrence

- **AARC96-050** Pulmonary Rehabilitation in the Managed Care Environment
 J. Hodgson

Tuesday, November 5

- **AARC96-053** Managed Care: A User's Guide
 J. Walton

- **AARC96-055** Cerebral Resuscitation and the Head-Injured Patient
 J. Lace

- **AARC96-056** Transport Ventilators and Equipment
 J. Focht

- **AARC96-057** COP: What Transport Teams Can Accomplish
 K. Adams

- **AARC96-058** The Head: Finding and Being the Right Coordinator
 K. Ryan

- **AARC96-059** The Body: Shaping the Program to Fit the Setting
 J. Roy

- **AARC96-060** The Heart and Soul: Reimbursement
 G. Connors

- **AARC96-063** Point-of-Care Analyzers: Are They Useful in the ICU?
 B. Shapiro

- **AARC96-065** The Changing Epidemiology of Asthma
 A. Bust

- **AARC96-066** Current Concepts of Pathogenesis and Pathophysiology of Asthma
 T. Biggby

- **AARC96-067** Clinical Variants of Asthma
 J. Hefner

- **AARC96-068** Asthma and the Workplace
 W. Hughsom

- **AARC96-069** Other Disorders Often Mistaken for Asthma
 J. Hefner

- **AARC96-070** Women's Issues in Asthma
 S. Ravenscraft

- **AARC96-071** Gerontology Curricula
 H. Sorensen

- **AARC96-072** Wellness Curricula
 W. Gavarn

- **AARC96-073** Sleep Medicine Curricula
 P. Munkley

- **AARC96-074** Panel Discussion: Incorporating Clinical Education into the New Curricular Components
 W. Gavarn, P. Munkley, H. Sorensen

- **AARC96-075** The Screening Process: Who Qualifies?
 R. Albert

- **AARC96-076** Getting the Patient Ready: The Rehab Process
 T. Limberg

- **AARC96-077** Post-Operative Management and Outcomes in Lung Volume Reduction Surgery
 R. Albert

- **AARC96-078** FYE: FDA, DOT, EPA, OSHA, etc.
 A. Saposnick

- **AARC96-079** JCAHO: Review '96 and Preview '97
 K. Brinon
Wednesday, November 6

- AARC96-088 Program Overview; Population and Samples: Concepts and Examples, J. Ran, Jr.
- AARC96-089 Ethics of Human Research and Institutional Review Boards, D. Hess
- AARC96-090 How Can We Measure Outcomes?, D. Hess
- AARC96-091 Advances in Diagnosis and Management of Pulmonary Infections, N. Machaty
- AARC96-092 Management of Obstructive Lung Disease, J. Heffner
- AARC96-093 Secondhand Smoke—If I Just Don't Inhale, R. Calm
- AARC96-094 Smoking Cessation—If I Just Get Involved, W. Gaban
- AARC96-095 Early Intervention—I Want Them Right Out of the Cradle, R. Calm
- AARC96-096 How to Do It Before Someone Does It to You, S. Parsons
- AARC96-097 Silos to Tribes: Re-engineering Via Service Lines, G. Kaufman
- AARC96-098 Service Centers: A Hospital-Based Initiative, P. Doorley
- AARC96-099/100 Overview of Current Asthma Management: Putting the Patient in Charge: Collaborative Self-Management in Asthma, A. Brist, B. Make
- AARC96-101/102 Assessment and Management of Acute Asthma; Mechanical Ventilation in Status Asthmaticus, J. Heffner, S. Ravenscraft
- AARC96-103 Alternative Therapies for Severe Asthma, B. Make
- AARC96-104 Pediatric Polysomnography: Please Don't Wake the Baby!, B. Chupp
- AARC96-105 Principles of CPAP Titration, P. Minkley
- AARC96-106 Changing the Sleep Lab to a Sleep/Wake Center of Excellence, P. Minkley
- AARC96-107 Challenges in Educating Sleep Medicine and Technology Practitioners, M. Brayford
- AARC96-108 Connecting yourself to the Internet—ISP, WWW, and Other TLAs to Get You Started, S. Nelson
- AARC96-109 Connecting the AARC to the Internet, S. Milligan
- AARC96-110 Connecting Educators to the Internet, M. Diana
- AARC96-111 Connecting Your Department to the Inter/Intra-net, S. Nelson
- AARC96-114 Initiatives and Overview of JCAHO, K. Branton
- AARC96-115 JCAHO in Acute Care, R. Ford
- AARC96-116 JCAHO in Subacute Care, P. Danne
- AARC96-117 Mental Health and Aging: Perspectives on Assessment and Interventions, P. Cacchione
- AARC96-118 Designing Environments for Older People: Helping to Retain Independence, M. Giordano
- AARC96-119 Community Services: What They Are and How to Access Them, M. Tingdale
- AARC96-120/121 It Takes an RCP to Direct an RC Department: Pulmonary Function Testing Should Be Determined by Patient-Driven Protocols, Not "Package Testing", J. Burchfield, J. Graybeal, R. Brown, J. Wagner
- AARC96-122/123 Overnight Oximetry in the Home Is "Crazy"; Nitric Oxide Is Only a Research Tool, P. Minkley, C. Mottram, D. Hess, R. Fitz
- AARC96-124 All Patients Requiring High Levels of Ventilatory Support Should Be Heavily Sedated or Neuromuscularly Blocked, J. Graybeal, R. Campbell
- AARC96-125 The Essence of an Acceptable (and Legal) Transfer Agreement, W. Meyer
- AARC96-126 What Constitutes "Medically Necessary" Respiratory Services in a Skilled Nursing Facility?, L. Ruesch
- AARC96-127 Documenting Respiratory Care Services Provided Under a Transfer Agreement: An Auditor's Perspective, J. Thompson
- AARC96-128 Getting Paid for Respiratory Care Services Provided Under a Transfer Agreement, W. Meyer
- AARC96-129/130 Assessing Pediatric Mechanical Ventilation—A New Approach; Developing Ventilatory Management Strategies—A Pathophysiologic Approach, B. Wilson, D. Durand
- AARC96-131/132 Quality Improvement in Pediatric Mechanical Ventilation—An Outcomes Approach; Current Surgical Treatment of Congenital Heart Disease, B. Wilson, J. Lambert
- AARC96-133 Mechanical Ventilator Strategies in Congenital Heart Disease—A Critical Thinking Approach, B. Wilson

Post Conference Special

Price Per Audio Tape $9.00 Storage Album $7.00

- Any 12 tapes in 1 FREE Album $99.00 (Save $10.00)
- Any 24 tapes in 2 FREE Albums $198.00 (Save $20.00)
- Any 36 tapes in 3 FREE Albums $297.00 (Save $45.00)

Shipping: Audio Domestic: $1.00 per tape, $2.00 minimum; $10.00 maximum

International: $2.00 per tape, $5.00 minimum

Optional Overnight Shipping Service

Please supply us with your FedEx account number or FedEx can charge your credit card. (This is in addition to the $15.00 RUSH charge for same day processing)

Please FedEx my order to me

Charge my: $9.00 each $99.00/package

OFFICIAL

<table>
<thead>
<tr>
<th>Number of Tapes</th>
<th>Number of 12 Tape Packages</th>
<th>Storage Albums</th>
<th>Domestic Shipping</th>
<th>International Shipping</th>
<th>Standard processing is within 10 working days. For same day Rush processing, add $15.00. Add $5.00 only if requesting invoice by Purchase Order (minimum purchase $25.00. Colorado residents, add 3.8% sales tax TOTAL ENCLOURED</th>
</tr>
</thead>
</table>

Card Number ____________________________
Expiration date: ____________
Cardholder Signature ____________________________

Amyotrophic lateral sclerosis (ALS) is one of the most common neuromuscular diseases; it almost always results in respiratory muscle failure and the need for home mechanical ventilation; and because 40% of home ventilator users have neuromuscular disease, the new book, Amyotrophic Lateral Sclerosis: Diagnosis and Management for the Clinician may be of interest to the respiratory community. In general, the book is well written, and the historical information and the chapter on "Notable People with ALS" are of broad interest. The epidemiology, etiology, diagnosis, and neuropsychology sections are "top notch." Considering the many new treatment trials and new medications on the market, this book is current.

Concerning rehabilitation, I believe that the augmentative communication section should have been expanded because it is of paramount importance for many tracheostomized home ventilator users. I would have also included information about patient links to environmental control via computer-driven voice synthesizers and printers. Unlike the authors, in my experience, I have not found lower leg bracing to be useful in typical patients with ALS. Likewise, on the contrary to what is written, I have found no evidence that supports strengthening exercises or incentive spirometry as beneficial for these patients. Citing the benefits of exercise for these patients and others with much more slowly progressive diseases seems inappropriate. I did not understand why a patient with a vital capacity of 500 mL would be asked to perform incentive spirometry to a volume of 500 mL when, in fact, the patient can be insufflated to a volume of 2,000 mL. Manually assisted coughing may follow a maximal insufflation to be effective when the vital capacity is so low.1 Despite these concerns, most general rehabilitation topics were presented nicely.

Considering pulmonary assessment, it is rarely necessary to perform full batteries of pulmonary function tests; likewise, initial arterial blood gas samples are rarely warranted. Peak cough flow measurements2 and end-tidal CO2 are not even mentioned even though they, along with spirometry and oximetry, are cheaper, noninvasive, more informative, and directly indicative of specific therapeutic interventions.2 On the other hand, the authors very appropriately discourage the routine sampling of arterial blood gases, and they appropriately ignore polysomnography.

The greatest shortcoming of this book lies in respiratory management. The book fails to differentiate the management of the patient with severe bulbar (throat) muscle weakness from the significant minority of patients with functional bulbar musculature but totally paralyzed peripheral muscles and diaphragm. The importance of the expiratory muscles and the manual and mechanical methods that can be used to assist them is either poorly presented or entirely ignored. One cannot effectively assist a cough with the lungs "empty." A normal cough expels 2.5 L of air. Patients with low vital capacities need deep insufflations before any attempts at assisting cough. Although range-of-motion of the extremity muscles and exercise therapy are amply presented despite the lack of evidence of their utility in ALS, no consideration is given to providing deep insufflations (range-of-motion to the lungs and chest wall). In my experience this may maintain pulmonary compliance and permit the patient to cough more effectively, raise the voice, and maintain maximum insufflation capacity.

The authors note "Devices such as nasal ventilation and cuirass ventilators may be temporarily effective and prolong life." Thus, noninvasive ventilation is equated with part-time bi-level ventilation and negative pressure methods; full-time ventilatory support is equated with tracheostomy ventilation. Mechanically assisted coughing, mouth piece and lip seal ventilation, the methods that best permit the use of 24-hour ventilatory support as an alternative to tracheostomy, are ignored.3 The authors also note that a strategy should be to increase respiratory muscle strength. This appears ironic since a study by these same editors2 demonstrated that even mildly affected amyotrophic lateral sclerosis patients respond to a respiratory muscle resistive exercise program with a decrease in vital capacity and inspiratory pressures; and, to my knowledge, no one else has demonstrated benefits of exercise for ALS patients.

The authors also fail to consider criteria for placing or removing tracheostomy tubes4 as well as criteria for permitting long-term 24-hour ventilatory support by noninvasive means for ALS patients.2 They state that the "more chronic use (of nasal bi-level ventilation) often results in skin breakdown and ulcer formation over the bridge of the nose." However, alternatives to nasal bi-level positive pressure do exist (eg, custom-molded nasal interfaces, interfaces that are alternated, and mouth piece or lip seal ventilation). The authors' approach to using part-time bi-level ventilation at inadequate inspiratory-assist ranges via a simple continuous positive airway pressure (CPAP) mask or part-time negative pressure ventilation, rather than the delivery of noninvasive ventilation by portable volume ventilators with an appropriate array of interfaces, limits a patient's options and may mean that the patient develops acute respiratory failure or undergoes tracheotomy. These physical medicine alternatives may keep many of these patients healthy.5,6 In my experience, the removal of tracheostomy tubes in many ALS ventilator users is helpful. Noninvasive physical medicine alternatives include the use of manual and mechanical assisted coughing instead of bronchodilators and oxygen, bi-level positive pressure at maximum spans, and the use of volume-cycled ventilators at adequate volumes and with a variety of facial interfaces around the clock as needed. Perhaps if the authors and editors become familiar with these methods, they may find that rates of acute respiratory failure are reduced in ALS patients or that the need for tracheotomy is prevented.

In summary, I disagree with the authors' statement "(noninvasive ventilation is necessarily) less effective than tracheostomy with mechanical ventilation" and that an elective tracheotomy should be considered for patients "as soon as VC drops below 1 liter" without considering criteria for tracheotomy.

306 Respiratory Care • March '97 Vol 42 No 3
I believe it is important for the authors to consider ethical and legal issues concerning mechanical ventilation and to inform patients of all their options. An idea unfortunately not even suggested by this book.

John R Bach MD
Professor and Vice-Chairman
Department of Pulmonary Medicine & Rehabilitation
University of Medicine & Dentistry of New Jersey
University Hospital
Newark, New Jersey

REFERENCES

This book was written to assist students and faculty who are preparing a scholarly journal article, thesis, or dissertation. The book can be used either as a text for upper division students or as a resource for researchers with various levels of expertise. The book is not a detailed methodology text, rather it is designed to assist researchers in making decisions throughout the research process. Therefore, I agree with the author’s recommendation that to take full advantage of this book, it is useful to have a basic familiarity with various quantitative and qualitative designs.

The format for each of the 11 chapters is consistent. Principles about designing either a qualitative or quantitative research study are presented, and then these principles are illustrated with specific examples. Each chapter ends with writing exercises and an annotated bibliography of additional readings. The citations are wonderful references to specific and detailed information regarding research design issues. A major strength is the plans and tips for consistent writing from the beginning and through the duration of a research project. The examples are rich and illustrative of key concepts. The author gives attention to the decision making required for designing and implementing a research project.

Chapter 1 addresses the framework for the study and is organized into 4 major sections: the focus of the study, choosing either a qualitative or quantitative paradigm, and considering methods for collection and analysis within each paradigm. The chapter begins with practical, specific, and sound advice on how to focus a study. The author proposes insightful questions to assist in choosing a focus and presents a convincing argument for why researchers should choose a single paradigm—either qualitative or quantitative as they focus their study. (However, later in Chapter 10, the author addresses some advantages and strategies for considering mixed-methodology studies that combine qualitative and quantitative research. I particularly like the written exercises in Chapter 10 because they are excellent activities for graduate students to illustrate their grasp of research design issues for quantitative versus qualitative research.)

The author gives a convincing explanation of the relationship between research paradigm and research methods. This brief and somewhat simplistic explanation is probably sufficient and may in fact be preferable to facilitate progress and understanding by graduate students. Chapter 1 ends with examples of formats for conceptualizing headings and subheadings when writing.

Chapter 2 focuses on the use of literature in research. Differences and similarities in using literature for qualitative and quantitative studies are addressed in a practical and reasonable fashion. In my opinion, the best part of this chapter and perhaps the entire book is the section on preparing a "research map of the literature." The author describes this useful tool for helping a person understand how the proposed study adds to, extends, or replicates research already completed. A useful model for limiting the literature review is also provided. The suggestions on managing the literature review should be welcomed by the expert as well as the novice researcher.

Chapters 3-5 deal with the 'how-tos' for writing the introduction. These chapters, like most of the book, are written in a straightforward and practical manner. The author elaborates on how difficult it is to write the introduction and the major role of the introduction to set the stage for the entire study. The introduction must create reader interest, establish the problem that leads to the study, place the study in the larger context of scholarly literature, and reach a specific audience. The author gets to the heart of the most frequent questions and problems encountered and how to go about handling the writing and decision making for the background of the problem, the purpose statement, the research questions, and the hypotheses.

Chapter 6 focuses on the use of theory in the design of a research study. This chapter should be most useful to graduate students who are writing a thesis or dissertation. However, the chapter can also be helpful to more experienced researchers who are writing articles for publication because it elaborates how theory should be incorporated into research design and scholarly writing. Chapter 7 deals with issues related to definitions, limitations, and the significance of a study.

Chapters 8-10 address how to design and to write the methods sections of a research study. Chapter 8 deals specifically with quantitative research, and Chapter 9 deals specifically with qualitative research. Chapter 10 does a nice job of elaborating on the usefulness and difficulties with mixed-methodology designs.

The last chapter provides a general discussion on scholarly writing. ‘Macrolevel’ writing strategies and ‘microlevel’ applications are provided. This is a great chapter for anyone who has writer’s block or difficulty beginning and sustaining the necessary writing. The last chapter artfully demonstrates the intimate relationship between doing research and writing research. It appears that the author took painstaking efforts to make his thoughts explicit and to share ideas that have worked well for him. My favorite line in the book is “all experienced writers know that writing is thinking and conceptualizing a thought” (Page 194).
I believe this book is a useful tool for improving the thinking, performing, and writing of research. The book is ideal for graduate students who have completed courses in research design methods and are beginning their academic and research careers. The book is also recommended for graduate student advisors who are preparing students to plan and to write independent research studies. Finally, the book is an excellent primer for researchers who are experienced with the scientific process of quantitative research but are generally unfamiliar with qualitative research.

Shelley C. Mishoe PhD RRT
Professor, Schools of Allied Health Sciences
Graduate Studies Chair, Department of Respiratory Therapy
Medical College of Georgia
Augusta, Georgia

The best place to put this reference is in a visible area of an intensive care unit (ICU) waiting room or with other reference books for each allied health and nursing department. This reference may be of use to families or novice health practitioners who are trying to understand the 'high-tech' therapies and interventions (eg, extracorporeal membrane oxygenation or mechanical ventilation) a loved one or patient is receiving in the ICU.

The intended readers for this book are lay persons (who may find the reading level demanding due to the nature of the content) and health care personnel not normally exposed to life support systems. The author focuses on clinical therapeutics, although physiology and pathophysiology are briefly discussed. The first 5 chapters cover topics relating to nutrition, hydration, circulation, and breathing during 'normal' conditions. In addition, the author presents the various clinical and ICU interventions that may be necessary to sustain life when these functions go awry. The last chapter relates to neuro-science and includes important discussion about the neurologic evaluation for the determination of brain death and persistent vegetative state. Readers of this reference may have a better perspective about these matters when or if a crucial decision must be made regarding do-not-resuscitate orders, the withdrawal of life support, and the evaluation of quality of life, terminal disease, and terminal illness. In the text, the author uses a style that may stimulate thoughts and questions in the mind of the reader.

That the most comprehensive chapter is on ventilatory support comes as no surprise, because the author is a respiratory care practitioner. Important discussion in this chapter centers around ventilator alarms, chest tubes, and the possible administration of narcotics for the relief of dyspnea and pain. In addition, the author discusses the phenomenon in some patients known as 'fighting the ventilator.'

With one exception, the content is accurate, with helpful illustrations. The units for systemic vascular resistance and pulmonary vascular resistance are in error, as is commonly the case in other references. These units are stated as dynes/sec/cm^2, rather than as dynes · s · cm^{-3}.

Although I have more than 20 years of ICU experience, I found that some of content in this book is new, interesting, and applicable. I intend to keep it handy.

Keith R. Momii MD MSc MA RRT RPFT
Department of Pulmonary Care Services
The University of Texas Medical Branch at Galveston
Galveston, Texas

1997 RESPIRATORY CARE OPEN FORUM

RESPIRATORY CARE welcomes abstracts of scientific reports on any aspect of respiratory care presented as
• an original study
• the evaluation of a method, device or protocol
• a case or case series.

If your abstract is accepted for publication in RESPIRATORY CARE, you will be invited to present it at the 43rd International Convention & Exhibition in New Orleans, Louisiana.

See the 1997 Call for Abstracts in this issue for more information.

Early deadline: March 17, 1997
RETROSPECTOSCOPE

Premature Science and Immature Lungs
Part 1: Some Premature Discoveries

When I was a medical student, we studied the tenth edition of Holt’s Diseases of Infancy and Children. I still have my copy, 45 years later. The tenth edition, as were its predecessors, was authoritative and up to date; published in 1932, it contains references to many articles published in 1931 or 1932. But among its 1,240 pages there is no mention of hyaline membrane disease or respiratory distress syndrome. There are three pages on asphyxia of the newly born and another three on congenital atelectasis; when these conditions occurred in premature babies, the authors thought it likely that they were due to lack of development of the respiratory center.

Three years earlier, a Swiss respiratory physiologist, Kurt von Neergaard, had published a now-classic paper (1); its title (translated from German into English is “New notions on a fundamental principle of respiratory mechanics: the retractile force of the lung, dependent on the surface tension in the alveoli.” Much more about Neergaard later, but in that 1929 paper he demonstrated clearly that surface forces at the interface of moist alveolar walls and alveolar gas caused a strong retractile force (even stronger than that of stretched elastic tissues) tending to collapse alveoli and he speculated that atelectasis of the newborn might be due to the considerable retractile force of surface tension that opposes the first expansion of the lungs.

It’s too much to expect that the two pediatricians responsible for the tenth edition of Holt’s text had noticed and read Neergaard’s 1929 article in a German journal of experimental medicine in time to have included it in their 1932 revision, so I looked in the medical physiology texts of the 1930s, then those of the 1940s and then those of the 1950s for a discussion of surface forces. They contained little or nothing on surface tension and nothing at all on a possible role that surface tension might play in expansion and retraction of the lungs.

What is surface tension? Figure 1 explains it well. Possibly there are better definitions but I have selected this one because it keeps me humble; it comes from pages 2 and 3 of the text (2) that I used as a second-year college student in 1929 in L. V. Heilbrunn’s stimulating course in general physiology at the University of Pennsylvania! Indeed, all of Chapter I (24 pages) was devoted to surface action and ways of measuring surface tension. Much later in life, I became a pulmonary physiologist and was even associated briefly with a pediatrician who measured pressure-volume curves of atelectatic lungs from babies who had died from hyaline membrane disease.

![Surface tension](attachment:fig1.png)

Surface tension. In order to appreciate the forces acting on a molecule at the air-water surface or phase boundary in our simple system, let us first consider the forces acting on a molecule of water situated in the interior of the system itself. The molecule A, situated in the interior of the water (Fig. 1) is attracted by all the other molecules around it with considerable forces known as the forces of molecular attraction; this attraction is similar to that exerted by every portion of matter on every other portion, and generates a pressure upon the molecule A of thousands of atmospheres. Since the attractions take place from all sides, however, their effects cancel out, and the molecule A is not constrained to move in any particular direction. Now consider the molecule B at the surface of the water. There are no water molecules above it, but only molecules of gas, which attract it very little; it is accordingly pulled down by the water molecules beneath it, and so tends to be drawn into the interior of the water. It cannot move, however, unless the mass of water becomes smaller in volume, and so the effect of the attraction from below is that the surface layers of the water become compressed. In addition to this, as every molecule within this surface layer is strongly drawn towards the interior of the fluid, the surface tends to become as small as possible. In fact, the surface behaves as if it were a stretched elastic membrane, always tending to contract, and just as we speak of the tension of stretched elastic membrane, so do we speak of a surface tension at the phase boundary under consideration.

Fig. 1. Definition of surface tension by Eric Ponder (2).
But I had total lack of recall of Ponder's Chapter 1 and the thought never occurred to me that forces at an air-liquid interface might be keeping alveoli closed. I had lots of very good company in failing to make this association and in failing to appreciate a few small voices that did make it. Fortunately, a series of events in the mid- and late 1950s led to the discovery of pulmonary surfactant, a unique substance formed and secreted by pulmonary Type II alveolar cells, that decreases surface tension to very low values at low alveolar volume and so serves as an anti-collapse factor. Absence of this surfactant (as in the lungs of some newborn babies, particularly premature ones) favors collapse of the lungs and puts an almost impossible burden on the weak inspiratory muscles of newly born premature babies. Because the key to understanding, to diagnosing before birth, and to managing respiratory distress syndrome before and after birth is a knowledge of surface tension and the behavior of surface films, let's start at the beginning—with the discovery of surface tension.

Pierre Simon Laplace and Surface Forces

The Marquis de Laplace, sometimes called a latter-day Newton, was a brilliant French mathematician, physicist, and astronomer. His genius was recognized early and he became professor of mathematics in the École Militaire de Paris. One of his students there was Napoleon Bonaparte. Certainly Laplace benefited from this association, because Napoleon richly rewarded Laplace with estates and a Ministry, forgave him his administrative iniquities, and continued to favor Laplace during Napoleon's 100 days' return to France (even though Laplace was among those who had signed the earlier order banishing Napoleon). Laplace had an amazing talent not only for mathematics but also for political survival, for although his friend Lavoisier went to the guillotine during the Reign of Terror in 1794, Laplace not only kept his head but his estates and wealth as well.

Laplace devoted his scientific career to a profound theoretical analysis of the solar system and between 1798 and 1827 published five huge tomes—more than 2,000 pages in all—entitled *Traité de Mécanique Céleste* (3). It dealt with the general laws of mechanics, gravitation, and motions of celestial bodies. Certainly it was a sequel to Newton's *Principia* and some rated it as intellectually on par with it.

What does Laplace's study of the heavenly bodies have to do with surface forces? In Tome IV of *Mécanique Céleste* are two supplements on "La théorie de l'action capillaire"—read before the French Academy and published in 1806 and 1807. On page 689 of Volume IV of Bowditch's translation (4) is Laplace's presentation of his general law in words:

> of a body terminated by a curve surface, upon an infinitely narrow interior canal, which is perpendicular to that surface, at any point whatever, is equal to the half sum of the actions upon the same canal, of two spheres which have the same radii as the greatest and the least radii of curvature of the surface at that point."

On page 823 is Laplace's equation (figure 2). It contains his formulation of the relationship between force, surface tension, and radii of curvature of surfaces.

Two question call for answers: (1) **What does capillary action have to do with surface tension?**

One of the simplest and earliest methods of measuring (statically) the surface tension of fluids of biological interest was to observe the height to which a column of fluid rises in a capillary tube. Actually, this was one of the methods used by Neergaard in 1929. A tube with an internal diameter of about 0.5 mm is dipped into the liquid; provided the liquid "wets" the internal wall of the tube, the meniscus rises above the flat surface of the water outside the tube, and it is pulled upward by surface forces (that tend to contract the surface until balanced by the downward force of gravity on the column of liquid. Laplace (see p. 1,009 of Volume IV of Bowditch's English translation) gives his explanation of why fluid rises in a capillary tube above its expected level:

> At the surface of a fluid, the attraction of the particles, modified by the curvature of the surface and of the sides of the vessel which contains it, produces the capillary attraction. Therefore these phenomena, and all those which chemistry presents, correspond to one and the same law, of which now there can be no doubt. Some philosophers have attributed the capillary phenomena to the adhesion of the fluid particles, either to each other, or to the sides of the vessels which contain them; but this cause is not sufficient to produce the effect. For, if we suppose the surface of water, contained in a glass tube, to be horizontal, and upon a level with that of the water in the vessel into which the tube is dipped by its lower end, the tenacity of the fluid, and its adhesion to the tube, would not curve this surface and render it concave. To produce that, it is necessary to suppose that there is an attraction in the upper part of the tube, which is not immediately in contact with the fluid.

> (2) Why do two supplements dealing with capillary action (and surface forces) belong in a treatise on the movements of planets and stars? Let Henri Poincaré (5) answer that:

> The astronomic universe is formed of masses, very great, no doubt, but separated by intervals so immense that they appear to us only as material points. These points attract each other inversely as the square of the distance, and this attraction is the sole force which influ-
we shall have, for the action of the body upon the canal,
\[K + \frac{1}{2} H \left(\frac{1}{R} + \frac{1}{R'} \right) \]

[Pressure at the point O]

formulas of the author, with his values of \(H, K \), supposing them always to be those which are obtained from observation, and therefore such as would arise from the action of a fluid of a variable density.

We shall suppose, in fig. 143, page 820, that the line \(OT \) is drawn tangent to the surface \(NOM \), in the point \(O \), and from any point \(S \) of the surface there is let fall upon this tangent the perpendicular \(ST = z \). We shall also suppose that the cylindrical column \(O'O \) is continued below the surface \(NOM \), so as to form the canal \(O'OVSU \), which, in its upward direction \(SU \), meets the surface \(NOM \) at \(S \), in a perpendicular direction, and passes on, in the same direction, to the external surface in \(U \). Putting \(R \) and \(R' \), respectively, for the greatest and the least radii of curvature of the surface \(NOM \) at the point \(S \), we shall have, in like manner as in [9842g],

\[K + \frac{1}{2} H \left(\frac{1}{R} + \frac{1}{R'} \right) = \text{the pressure on the base} \, S \text{ of the column} \, US \text{ of a variable density.} \]

If the line \(ST = z \) be vertical, it will express the elevation of the point \(O \) above the point \(S \); and the pressure of a column of fluid of that height will be \(gz \). If this line be inclined to the horizon by an angle whose cosine is represented by \(\frac{u}{z} \); the vertical pressure will become \(gz \times \frac{u}{z} \), or simply \(gu \); \(u \) being the vertical elevation of the point \(O \) above the point \(S \). Adding this quantity \(gu \) to the pressure at \(O \) [9842g], we get the whole pressure at \(S \), which ought to balance the pressure in the canal \(US \), given in [9842n], upon the principle of the equilibrium of the canals, which is so frequently used in this work; hence we have

\[K + \frac{1}{2} H \left(\frac{1}{R} + \frac{1}{R'} \right) + gu = K + \frac{1}{2} H \left(\frac{1}{R} + \frac{1}{R'} \right). \]

If we suppose the situation of the point \(S \) to be successively varied, by infinitely small intervals, along the surface \(NOSM \), while the point \(O \) remains the same, we shall have \(K, H, R, R', g, \) constant; and \(u, R, R' \), variable; and then the differential of [9842p] [9842q] will become, by transposing the term \(gu \),

\[\frac{1}{2} H \cdot d \left(\frac{1}{R} + \frac{1}{R'} \right) - gdu = 0, \]

which is of the same form as [9811], changing \(H \) into \(H_s \), as in [9842r], and placing an additional accent on \(R, R' \), as in [9842n], to conform to the notation which we have here used. This equation may also be deduced from the same principle which is employed in [9806]; for the quantity \(g \) being multiplied by the element \(-du \), is the same as in [9807]. [9842s]
ences their movements. But if our senses were sufficiently keen to show us all the details of the bodies which the physicist studies, the spectacle thus disclosed would scarcely differ from the one the astronomer contemplates. There also we should see material points, separated from one another by intervals, enormous in comparison with their dimensions, and describing orbits according to regular laws. These infinitesimal stars are the atoms. Like the stars proper, they attract or repel each other, and this attration or this repulsion, following the straight line which joins them, depends only on the distance. The law according to which this force varies as function of the distance is perhaps not the law of Newton, but it is an analogous law; in place of the exponent—2, we have probably a different exponent, and it is from this change of exponent that arises all the diversity of physical phenomena, the variety of qualities and of sensations, all the world, colored and sonorous, which surrounds us; in a word, all nature.

Such is the primitive conception in all its purity. It only remains to seek in the different cases what value should be given to this exponent in order to explain all the facts. It is on this model that Laplace, for example, constructed his beautiful theory of capillarity; he regards it only as a particular case of attraction, or, as he says, of universal gravitation, and no one is astonished to find it in the middle of one of the five volumes of the Mécanique Céleste.

Nathaniel Bowditch

Laplace’s Mécanique Céleste came to the attention of English-speaking scientists largely through Bowditch’s translation (4). Bowditch in some ways is more remarkable than Laplace himself. Bowditch, an American with no formal schooling beyond the age of 10, signed on as a clerk on a sailing vessel in 1795 at the age of 22 and was at sea for most of the next 9 years. During that time, he made his own studies of navigation that resulted in his correcting more than 8,000 errors in the then-bible of navigators, Moore’s Practical Navigator. His great interest in the planets and stars led him to Laplace’s Mécanique Céleste and he devoted more than 30 years of his life to translating it into English. He never completed Tome V, but his translation of the first four Tones (10 “Books”) occupies more than 3,700 pages.* More remarkable than his translation are his annotations and explanations of Laplace’s work and his corrections of Laplace’s many errors. His annotations were helpful even to expert mathematicians because Laplace’s mathematics was highly sophisticated and difficult to follow; Bowditch’s corrections were essential

because previously Laplace’s errors went unnoticed. Figure 2 shows the extent of Bowditch’s contributions to Laplace’s work; of Bowditch’s 3,700 pages, about half are a translation of Laplace’s French edition and the remaining half are Bowditch’s annotations. All of this from an unschooled young man in a rough new world.1

Bowditch had other accomplishments. A son, Henry Igersoll Bowditch, was a professor of clinical medicine at Harvard (1859-1867) and an early specialist in diseases of the chest. A grandson, Henry Pickering Bowditch, who established the first physiological laboratory in America (1871), was one of the three founders of the American Physiological Society, a co-editor of the new American Journal of Physiology, first president of the American Physiological Society, and a Dean of the Harvard Medical Faculty.

Thomas Young

As so often happens in science, the first was not the first. Laplace read his paper to the Institute of France in 1805 and it was published in 1806 as a supplement to Mecanique Céleste. Young read his paper, “An essay on the cohesion of fluids,” before the Royal Society of London December 20, 1804, and it was published in the Philosophical Transactions for 1805 (6). Young’s paper contained, in words, most of what Laplace presented a year later in elaborate, formidable, and impressive mathematical terms. Notorious for borrowing from the work of others and giving little or no credit to them, Laplace made no reference to Young in his first supplement and discussed Young’s work in one brief paragraph in his second supplement a year later. Young, in some “additional remarks” added to an 1807 reprint of his 1805 article (6), took exception to Laplace’s behavior in the following nicely composed paragraph.

In an essay read to the Institute of France in December 1805, and published in 1806, as a supplement to the Me
canique Celeste, Mr. Laplace has advanced a theory of capillary attraction, which has led him to results nearly similar to many of those which are con
tained in this paper [Young’s 1805 paper]. The coinci
dence is indeed in some respects so striking, that it is natural, upon first impression, to inquire whether Mr. Laplace may not be supposed either to have seen this essay, or to have read an account of its contents in some periodical publication; but upon further reflection, we cannot for a moment imagine a person so high and so deserved a reputation as Mr. Laplace, to wish to appro
ciate to himself any part of the labors of others. The path which he has followed is also extremely differ-

* Only 500 copies of Bowditch’s original translation were printed, and most of these are held in “rare books” collections, but the Chelsea Publishing Company, Bronx, New York, reprinted the four volumes in 1966 ($1.25 per set in 1976).

1 For a 168-page biography of Bowditch, written by his son Nathaniel, see Volume IV of Bowditch’s translation (4) or Volume I of Chelsea Company’s reprint (4).
ent from that which I had taken; several of the subjects
which I had considered as belonging to the discussion,
have not occurred to Mr. Laplace; and it is much more
flattering than surprising, that, to an assembly of philos-
ophers not extremely anxious to attend to the pursuits
of their contemporaries, investigations should be com-
mitted, by the most distinguished of their mem-
bers, as new and important, which had been presented,
a year before, to similar society in this country.

S. M. Tenney ("The Tangled Web," unpublished manuscript)
has proposed that the name of Laplace's law be changed to
the "Young-Laplace law." Whether it ever will be or not,
Young's fame is secure without it. While a medical student,
he established the mechanism by which the lens of the eye
accommodates for far and near vision. He later formulated
a theory of color vision (the Young-Helmholtz theory), he
discovered the principle of interference of light, proposed
the wave theory of light transmission, contributed to the theory
of tides, and established a coefficient of elasticity (Young's
modulus). Most fascinating of all his accomplishments was
his contribution to deciphering the Rosetta stone. Young
provided the important clue necessary for unlocking the Egy-
pptian system of writing; it was his idea that, in the transli-
eration of non-Egyptian names, hieroglyphic symbols with
phonetic values would be used. The credit for the full
translation in 1822 goes to Champollion the Younger, but Young's
1819 article persuaded Champollion to drop his conviction
that hieroglyphic symbols were never phonetic.

The Long Quiet Period

It took almost 100 years after Bowditch's translation for
Laplace's law to become of interest to biomedical scientists.
Neergaard's work on the lung came in 1929. And Burton, who
applied Laplace's law to the stability of small blood vessels
in 1951 (7), stated that the only previous application he found
to a vascular problem was that of Woods in 1892 (8). Woods,
a throat surgeon at the Richmond Hospital in Dublin demon-
strated that the pressure in the cardiac ventricles depended
not only on the tension developed by the contracting muscle
but also on the size and shape of the heart (i.e., the principal
radii of curvature).** In 1960 Burton devoted six pages of
his chapter in Ruch and Fulton's textbook of medical phys-
iology (9) to applications of Laplace's law to the heart and
vessels; the same book contained no mention of any role of
surface tension in the lungs, although Neergaard's 1929 exper-
iments had been discovered, repeated, confirmed, and pub-
lished in 1954 by Radford (10).

However, the long quiet period in which mammalian phys-
iciologists and biophysicists failed to become interested in sur-
face forces was a very busy one for physicists and chemists.
Lord Rayleigh, 1904 Nobel laureate in physics, used surface
physics to prepare monomolecular films of liquids and to deter-
mine the dimensions of molecules (11). Langmuir, working
in General Electric's Research Laboratory, developed a more
precise method in 1917 (12) for measuring molecular dimen-
sions and orientation using technics of surface physics and
chemistry. He must have had his eye on a Nobel prize in chem-
istry (which he won in 1932) because he devoted two and a
half pages of fine print at the beginning of his 1917 article
to establishing in great detail his priority in the experiments
he was about to report; he opened with the statement that, "The
fundamental idea of the orientation of group molecules in the
surfaces and in the interior of liquids as a factor of vital impor-
tance in surface tension and related phenomena occurred to
me in nearly its present form in June and July, 1916."

Other physicists developed methods that were suitable for
measuring surface tension under dynamic conditions; these
were eventually used by biologists. Maxwell devised his frame
(13), Whilhelmy his surface balance (14), Langmuir his bal-
ance (12), and Adam his improved Langmuir balance (15).
And Ms. Agnes Pockels insensitively referred to as Miss Agnes
Pockels by Lord Rayleigh "described a simple method for
increasing or diminishing the surface of a liquid in any pro-
portion, by which its purity may be altered at pleasure" (16).
Ms. Pockels apologized for her boldness, not being a pro-
fessional physicist, in writing about her experiments to Lord
Rayleigh, who promptly had her paper published in Nature.

And beginning in the 1920s, numerous monographs and
reviews appeared on interfacial phenomena, surface chem-
istry, soap films, foams, surface physics, and monomolecu-
lar layers: a World Congress on Surface Active Agents was
held in 1954.

These subjects were also of great interest to general and
cellular physiologists and especially to those interested in
membranes. William Bayliss' first edition of Principles of
General Physiology, published in 1915, devoted Chapter III
to surface action (17). J. B. Leathes, who gave the Croomian
Lectures in 1923 (18) on "Role of Fats in Vital Phenomena;" de-
scribed experiments on compressing and enlarging surface
films of phospholipids (lecithin) and palmitic acid using
Adam's surface balance. Leathes was coming very close to
what we now call pulmonary surfactant.

But the mammalian physiologists didn't become inter-
ested in alveolar surface tension until 1929, and then only
one did—Neergaard.

Back to Neergaard

Neergaard was born in Schleswig-Holstein in Germany.
Because he was in poor health as a child, his mother brought
him to Davos, the famous Swiss health spa. He remained in
Switzerland, became a Swiss citizen, and was graduated from the University of Zurich in 1917. In 1922 he moved to Basel where he worked with a well-known internist, Professor Stae
ehelin. But he spent little of his time in the medical clinic in Basel and most of it with physiologists. There he met Dr. Karl Wirz. The Swiss physiologists had been unusually active and innovative in the study of pulmonary mechanics. Rohrer had done his now-classic study on airway resistance in 1915 (19), and Fleisch had devised an excellent apparatus for continuous measurement of inspired and expired air flow in 1925 (20). Wirz, a pupil of Rohrer's, had measured changes in pleural pressure during respiration in 1923 (21). Neergaard joined forces with Wirz to study first lung elasticity, and then flow resistance in air passages of normal humans and those with asthma or emphysema (22, 23).

Shortly thereafter, Neergaard had a novel idea about lung elasticity that had eluded all previous physiologists. He said (1):

The lung is probably unique among tissues in its extraordinary ability to expand and retract. So far, this has been regarded as due to the elasticity of the tissue itself, and particularly that of elastic fibers. Although attempts have recently been made to determine the elasticity of the elastic fibers directly with the aid of a micro-manipulator (Reden), this does not prove that the entire retractility of lung can be attributed to these structures.

So far, one force has not been taken into account that definitely merits consideration in this context. This is surface tension. It is active at the boundary between alveolar epithelium and alveolar air. Wherever the surface of an aqueous solution touches upon a gaseous space, the influence of molecular attraction on the marginal layer of molecules gives rise to tensions in the solution that are described as surface tension. All the phenomena of capillary chemistry, the rise of liquids in fine capillaries, the pressure of soap bubbles, and numerous other phenomena, are based on surface tension. Considerable forces are involved which also play a role in other aspects of respiratory mechanics (as previously pointed out in the evaluation of the so-called adhesion of the pleural surface). The surface tension partly depends on the nature of the solution that constitutes the bordering medium and particularly on the curvature of the boundary. The smaller the radius of curvature, the stronger the force of surface tension, which is like a taut rubber membrane attempting to retract like a rubber balloon. Such deeply curved boundaries between fluid or an aqueous gel (the cellular membrane of the alveolar epithelium) and a gaseous space exist in countless numbers in the pulmonary alveoli.

To visualize the mechanism even more clearly, one should imagine a thin capillary tube at the end of which a soap bubble has been blown. As soon as blowing is discontinued and the inside of the soap bubble is allowed to communicate with the atmosphere via the capillary, the bubble immediately becomes smaller and retracts owing to the influence of surface tension. The smaller the diameter of the capillary in this situation and the smaller the radius of curvature of the bubble, the more rapid and more energetic the retraction. Such small bubbles, which communicate with the atmosphere via narrow capillaries, can be compared to the alveoli of a lung.

In view of the almost complete saturation of expired air with water vapor, we can imagine the alveolar epithelium as covered by a thin film of fluid. The surface tension attempts to make the alveoli smaller, and therefore exerts an influence in the same direction as the retractive force of the entire lung. There can be no doubt, therefore, about its qualitative significance, but the quantitative aspects are not known.

Neergaard then set out to obtain quantitative values for pulmonary surface tension. He reasoned as follows:

To measure the influence of surface tension on retractility, the total retractive force must first be measured by known methods; that is, the so-called elasticity curve in relation to lung volume must be obtained. Since it is impossible to measure surface tension by itself independent of tissue elasticity, our only alternative was to eliminate surface tension in a second series of determinations, thus measuring tissue elasticity separately. The difference between total retraction and the retraction remaining after elimination of surface tension is a measure of surface tension at the same lung volume.

To eliminate surface tension, the lungs had to be filled with a fluid down to the alveoli to remove the effect of the air-tissue interface. . . . the lung was finally emptied of air by a pressure difference method and then immediately filled with an isotonic gum solution. By the addition of about 7 percent gum arabic to the Tyrode solution, the oncotic pressure was adjusted so that no edema occurred. The solution thus obtained met physiological requirements to a very high degree [see figure 3].

Neergaard divided each experiment into two parts. First he measured the pressure-volume curve with the lung air-filled, and then again with the lung fluid-filled, to eliminate the air-fluid interface and the effects of surface tension; the second curve must then represent the force exerted by elastic tissues. By subtraction, he calculated the force exerted by surface tension. He found, in all states of expansion, that surface tension was responsible for more of total lung retraction than was tissue elasticity. To put it in another way, the pressure needed to distend the lung to a given volume was always higher when the lungs were air-filled and always lower when they were saline-filled. Thus Neergaard, using a direct, simple, unequivocal method, found that the Laplace (or the Young-Laplace) law held for pulmonary alveoli and that surface effects were important forces to be reckoned with in inspiration and expiration.
He went further in his experiments, reasoning, and speculation. He reasoned that the surface tension of alveoli may be lower than that of other body fluids, by the accumulation of surface-active substances, according to the Gibbs- Thomson law, and that "it is also conceivable that this [lower tension] would be useful for the respiratory mechanism because without it pulmonary retraction might become so great as to interfere with the adequate expansion." He tried to measure surface tension of aqueous extracts of lungs and found unexpectedly low values of 35 to 41 dynes (water was 73, serum 60-65, and extracts of muscle, spleen, liver, and heart were between 47 and 53 dynes). He was not satisfied with his methods11 and suggested that the question (of surface tension as a force counteracting the first breath of the newly born) be investigated further. Unfortunately, he himself did not do so, and no one repeated or extended his experiments for more than 25 years.

In 1929, the year in which his now-famous report was published, he moved from Basel back to Zurich to become head physician at the Institute of Physical Therapy there. He never wrote another paper on the lung and did not further scientific investigations. Instead he immersed himself in subjects such as the interrelationship of medicine with philosophy, politics, and social problems (again, ahead of his time). In 1940 he was appointed Director of his clinic and Professor of Physical Therapy in Zurich. He died in 1947, at least a decade before Clements demonstrated clearly, by direct measurement, that lungs contain a unique surfactant and a dozen years before Avery and Mead published direct evidence linking its absence to the respiratory distress syndrome of the newly born.

Why did Neergaard leave Basel and research shortly after making his most important discovery? No one knows for sure. He must have known that it was important because he used the word "Grundbegriff" (fundamental or basic principle) in the title of his article. But he received no recognition for his discovery, then or later in his life. None of his obituaries in 1947 even mentioned that he had ever done research on the lung (just as Paul Bert’s obituary told of his work on skin grafting but said nothing of his momentous study of the effects of high and low atmospheric pressures on man). Dr. Joan Gil has learned that Professor Böni, who was Neergaard’s disciple, daily collaborator for his last 18 years in Zurich, and finally his successor, never heard Neergaard mention his work in Basel on pulmonary physiology or express any particular interest in the lung.

Apparently, Neergaard’s work fell into the category described by Gunther Stent in his article "Prematurity and Uniqueness in Scientific Discovery" (26); according to Stent; a discovery is premature if its implications cannot be connected by a series of simple logical steps to canonical, or generally acceptable, knowledge. Von Neergaard by temperament was neither a fighter nor a scientific entrepreneur. As a result, his work, which could have led to saving lives of premature babies in the 1930s, suffered a premature death.

Neergaard’s work ends Part I of this story. Part II (for the most part) begins 25 years post-Neergaard—in the mid-1950s.

\textbf{Julius H. Comroe, Jr.}

\textbf{ACKNOWLEDGMENT}

I acknowledge with thanks invaluable assistance from Dr. Joan Gil, who made careful inquiries into Neergaard’s career in Basel and Zurich, from Dr. John Clements, who reviewed Part I, and from Drs. Alan Burton and Marsh Tenney.

\textbf{REFERENCES}

4. Bowditch, N.: Mécanique Céleste by the Marquis de Laplace, trans-
MEDWATCH
THE FDA MEDICAL PRODUCTS REPORTING PROGRAM

For VOLUNTARY reporting by health professionals of adverse events and product problems

A. Patient Information

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lbs</td>
</tr>
</tbody>
</table>

In confidence

B. Adverse event or product problem

1. [] Adverse event and/or [] Product problem (e.g., defects/malfunctions)

2. Outcomes attributed to adverse event (check all that apply)
 - [] death
 - [] life-threatening
 - [] hospitalization - initial or prolonged
 - [] disability
 - [] congenital anomaly
 - [] required intervention to prevent permanent impairment/damage
 - [] other

3. Date of event

4. Date of this report

5. Describe event or problem

C. Suspect medication(s)

<table>
<thead>
<tr>
<th>1. Name (give labeled strength & mfr/labeler, if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
</tr>
<tr>
<td>#2</td>
</tr>
</tbody>
</table>

2. Dose, frequency & route used

3. Therapy dates (if unknown, give duration)

4. Diagnosis for use (indication)

5. Event abated after use stopped or dose reduced

6. Lot # (if known)

7. Exp. date (if known)

8. Event reappeared after reintroduction

9. NDC # (for product problems only)

10. Concomitant medical products and therapy dates (exclude treatment of event)

D. Suspect medical device

1. Brand name

2. Type of device

3. Manufacturer name & address

4. Operator of device
 - [] health professional
 - [] lay user/patient
 - [] other

5. Expiration date

6. model #

7. catalog #

8. serial #

9. lot #

10. Device available for evaluation? (Do not send to FDA)

11. Concomitant medical products and therapy dates (exclude treatment of event)

E. Reporter (see confidentiality section on back)

1. Name & address

2. Phone #

3. Occupation

4. Also reported to
 - [] manufacturer
 - [] user facility
 - [] distributor

5. If you do NOT want your identity disclosed to the manufacturer, place an "X" in this box.

Submission of a report does not constitute an admission that medical personnel or the product caused or contributed to the event.
ADVICE ABOUT VOLUNTARY REPORTING

Report experiences with:
- medications (drugs or biologics)
- medical devices (including in-vitro diagnostics)
- special nutritional products (dietary supplements, medical foods, infant formulas)
- other products regulated by FDA

Report SERIOUS adverse events. An event is serious when the patient outcome is:
- death
- life-threatening (real risk of dying)
- hospitalization (initial or prolonged)
- disability (significant, persistent or permanent)
- congenital anomaly
- required intervention to prevent permanent impairment or damage

Report even if:
- you’re not certain the product caused the event
- you don’t have all the details

Report product problems – quality, performance or safety concerns such as:
- suspected contamination
- questionable stability
- defective components
- poor packaging or labeling
- therapeutic failures

How to report:
- just fill in the sections that apply to your report
- use section C for all products except medical devices
- attach additional blank pages if needed
- use a separate form for each patient
- report either to FDA or the manufacturer (or both)

Important numbers:
- 1-800-FDA-0178 to FAX report
- 1-800-FDA-7737 to report by modem
- 1-800-FDA-1088 to report by phone or for more information
- 1-800-822-7967 for a VAERS form for vaccines

If your report involves a serious adverse event with a device and it occurred in a facility outside a doctor’s office, that facility may be legally required to report to FDA and/or the manufacturer. Please notify the person in that facility who would handle such reporting.

Confidentiality: The patient’s identity is held in strict confidence by FDA and protected to the fullest extent of the law. The reporter’s identity, including the identity of a self-reporter, may be shared with the manufacturer unless requested otherwise. However, FDA will not disclose the reporter’s identity in response to a request from the public, pursuant to the Freedom of Information Act.

The public reporting burden for this collection of information has been estimated to average 30 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

Drugs Reports Clearance Office
Paperwork Reduction Project (9301-0001)
Report to Humphrey Building, Room 531H
200 Independence Avenue, S W
Washington, DC 20201

An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number.

Please do not return this form to either of these addresses.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service • Food and Drug Administration

Please Use Address Provided Below – Just Fold In Thirds, Tape and Mail

MEDWATCH
The FDA Medical Products Reporting Program
Food and Drug Administration
5600 Fishers Lane
Rockville, MD 20852-9787
ABSTRACTS

(Abstracts continued from Page 279)

associated with decreased exposure in the control groups. CONCLUSION: Such long-term maintenance of behavior change is highly unusual in the general behavioral science literature. Let alone for addictive behaviors. We conclude that ETS exposure can be reduced and that a clinician-delivered treatment may provide substantial benefit.

Clinical practice guidelines have been promoted as an effective way of reducing costs while maintaining quality care. OBJECTIVE: To study a practice guideline to shorten length of stay for patients hospitalized with exacerbation of COPD. METHODS: We retrospectively studied a practice guideline to identify patients who were at low risk of complications from their exacerbation of COPD and hence potentially suitable for early hospital discharge. We then prospectively studied the practice guideline using an alternate month intervention and control time series over a period of 12 months. RESULTS: The practice guideline was retrospectively studied in 250 consecutive patients hospitalized with exacerbation of COPD. Of the 250 patients, 237 patients (94.8%) were discharged as low risk after 72 hours of hospitalization and were potentially suitable for discharge. In the prospective study, few patients (24 of 124 or 19%) were identified for implementation of the guideline. However, in those patients who were identified, length of stay was not statistically different. The data also showed that length of stay for both intervention and control groups had shortened over this time. CONCLUSION: Certain practice guidelines may appear efficacious in studies but may actually lack effectiveness when applied in clinical settings and may even increase costs. We demonstrated the importance of prospectively evaluating clinical practice guidelines before recommending them for widespread implementation.

In patients with AIDS, isolation of cytomegalovirus (CMV) from respiratory secretions is common. It is often found with other pathogens, which has led to debate regarding its role as a primary pulmonary pathogen. A retrospective investigation of patients with AIDS and CMV as a sole pulmonary isolate was performed in an attempt to describe their clinical presentation and course. All patients admitted to the hospital with pneumonia and with BAL or transbronchial biopsy (TBB) specimen positive for CMV between 1991 and 1994 were identified through a review of inpatient records. Inclusion criteria included positive CMV cultures from BAL, cytomegalic inclusion bodies from BAL or TBB, and thorough documentation of the absence of other pulmonary pathogens. Nine patients met the inclusion criteria for CMV pneumonia. Seven were male and 2 were female, ages 26 to 44 years, and all had a history of opportunistic infections. Typical clinical presentation was characterized by increased respiratory rate, hypoxemia, and diffuse interstitial infiltrates. The mean CD4 count was 29.6 (± 22) cells/cubic millimeter, mean lactate dehydrogenase level was 414 (± 301) IU/L, and in 7 patients in whom CMV antigen was measured was it greater than 50 positive cells per 200,000 WBCs. Three untreated patients died of respiratory failure and 3 had autopsy confirmation of CMV pneumonia. Five patients were treated with anti-CMV therapy for at least 2 weeks, and all demonstrated improvement in symptoms, oxygen saturation, and chest radiograph. At 3 months follow-up, all 5 patients were asymptomatic with no pulmonary symptoms. At 6 months follow-up, 3 of the 5 patients remained asymptomatic; the other 2 died of other opportunistic infections. In at least these 9 patients, CMV represented a primary pulmonary pathogen. Patients who were treated responded quickly and were able to be discharged home from the hospital with marked improvement in their symptoms. We recommend that clinicians consider this diagnosis in the proper setting and consider treatment with anti-CMV therapy.

OBJECTIVES: Mechanical ventilation in patients with obstructive airway disease (OAD) is associated with the development of dynamic hyperinflation and intrinsic positive end-expiratory pressure (PEEP). One of the effects of this form of PEEP is to act as an inspiratory threshold load that can produce ineffective breath triggering, dyspnea, and muscle fatigue. Recently it has been shown that applying PEEP in the ventilator circuit can reduce this imposed triggering load. We wished to investigate this further by studying patients with OAD being weaned with pressure support (PS) ventilation. Our first objective was to determine the prevalence and magnitude of this form of PEEP in OAD patients who were clinically judged to be capable of triggering mechanical ventilatory breaths. Our second objective was to attempt to reduce the triggering load by applying circuit PEEP and then observe the response of patient-ventilator interactions during the patient-triggered, pressure-limited PS breath. DESIGN: Thirteen random patients with OAD who were receiving PS ventilation were studied by measuring airway pressures, airway gas flow, baseline esophageal pressure, esophageal pressure time products (PTP), and esophageal pressure changes before ventilator gas delivery began (ΔPs taken to represent PEEP). Measurements were made at baseline and after stepwise increases in circuit PEEP up to the PEEP. RESULTS: We found measurable PEEP in all patients (average ± SD of 9.54 ± 4.3 cm H2O) and it was > 10 cm H2O in 7 patients. As would be predicted, we observed progressive reductions in PEEP as applied PEEP was given. We also observed that the component of patient effort (PTP) related to overcoming PEEP also decreased, but the PTP related to tidal volume (VT) did not. The VT associated with the set PS thus did not change with application of PEEP, nor did the breathing frequency. CONCLUSION: PEEP is common in OAD patients receiving mechanical ventilatory support. The imposed triggering load from PEEP can be offset to large extent by circuit PEEP approaching the baseline PEEP. Although total patient effort substantially falls with applied PEEP, the patient effort that combine with PS to effect VT does not.

BACKGROUND: Pulse oximetry is considered a standard of care in both the operating room and the postanesthetic care unit, and it is widely used in all critical care settings. Pulse oximeters may fail to provide valid SpO2 data in various situations that produce low signal-to-noise ratio. Motion artifact is a common cause of oximeter failure and loss of accuracy. This study compares the accuracy and data dropout rates of 3 current pulse oximeters during standardized motion in healthy volunteers. METHODS: Ten healthy volunteers were monitored by 3 different pulse oximeters: Nellcor N-200, Nellcor N-3000, and Masimo SET (prototype). Sensors were placed on digits 2, 3, and 4 of the test hand, which was strapped to a mechanical motion table. The opposite hand was used as a stationary control and was monitored with the same pulse oximeters and an arterial cannula. Arterial oxygen saturation was varied from 100% to 75% by changing the inspired oxygen concentration. While SpO2 was both constant and changing, the oximeter sensors were connected before and during motion. Oximeter errors and dropout rates were digitally recorded continuously during each experiment. RESULTS: If the oximeter was functioning before motion began, the following are the percentages of time when the instrument displayed an SpO2 value within 7% of control: N-200 = 76%, N-3000 = 87%, and Masimo = 99%. When the oximeter sensor was connected after the beginning of motion, the values were N-200 = 68%, N-3000 = 47%, and Masimo = 97%. If the alarm threshold was chosen SpO2 less than 90%, then the positive predictive values (true alarms/total alarms) are N-200 = 73%, N-3000 = 47%.
ABSTRACTS

The electrocardiography (ECG) and chest radiography (CXR) or echocardiogram (Echoc) are two important diagnostic tools in the evaluation of patients with heart murmurs or chest pain. OBJECTIVES: To determine the usefulness of electrocardiography (ECG) and chest radiography (CXR) in evaluation of patients referred to the pediatric cardiologist for the evaluation of heart murmurs or chest pain. DESIGN: In this prospective study, 106 consecutive outpatient patients were categorized with no heart disease, possible heart disease, or definite heart disease based on history and physical examination; they then underwent ECG and CXR. Setting: Academic pediatric cardiology practice. RESULTS: In patients thought to have no heart disease, the diagnosis was changed to definite heart disease in 40% of the basis of abnormal CXR or ECG. In 25 patients thought to have possible heart disease, the diagnosis was changed to no heart disease in 7 patients or definite heart disease in 5 patients after review of the CXR and ECG. All 25 patients diagnosed with definite heart disease had this confirmed by abnormal CXR (2), ECG (3), both abnormal CXR and ECG, or echocardiogram (18). CONCLUSIONS: The ability of ECG and CXR to rule out heart disease in patients thought to have no heart disease helped to rule out lesions in 7 patients with possible heart disease, helped diagnose heart disease in 5 patients thought to have possible heart disease, and helped confirm heart disease in 9 patients. In these cases of cost containment, routine ECG and CXR continue to be valuable tools for the pediatric cardiologist in evaluation of patients with heart murmurs or chest pain.

BACKGROUND: Acute respiratory failure may develop in patients with chronic obstructive pulmonary disease due to intrinsic positive end-expiratory pressure (PEEP) and increased resistive and elastic loads. Proportional assist ventilation is an experimental mode of partial ventilatory support in which the ventilator generates flow to unload the resistive burden (flow assistance: FA) and volume to unload the elastic burden (volume assistance: VA) proportionally to the inspiratory muscle effort, and PEEP can be counterbalanced by application of external PEEP. The authors assessed effects of proportional assist ventilation and optimal ventilatory settings in patients with chronic obstructive pulmonary disease and acute respiratory failure. METHODS: Inspiratory muscles and diaphragmatic efforts were evaluated by measurements of esophageal, gastric, and transdiaphragmatic pressures. Minute ventilation and breathing patterns were evaluated by measuring airway pressure and flow. Measurements were performed during spontaneous breathing, continuous positive airway pressure, FA, FA + PEEP, VA, VA + PEEP, FA + VA, and FA + VA + PEEP. RESULTS: FA + PEEP provided the greatest improvement in minute ventilation (89 ± 3%) and dyne/sec (62 ± 2%). The largest reduction in pressure time product per breath of the respiratory muscles and diaphragm (44 ± 3% and 33 ± 2%, respectively) also was observed during FA + PEEP condition. When VA was added to this setting, a reduction in respiratory rate (50 ± 3%), an increase in inspiratory time (102 ± 6%), and a further reduction in pressure time product per minute (65 ± 2% and 64% for the respiratory muscles and diaphragm, respectively) was observed. However, values of pressure time product per liter were not different from FA + PEEP conditions.

RESPIRATORY CARE September 1997
A Special Education Issue

We're encouraging the submission of papers addressing ALL aspects of Respiratory Care Education—from teaching patients to use metered dose inhalers to designing curriculum requirements for 2- and 4-year programs, from cross-training and continuing education to post-graduate programs. Papers based on your controlled, objective research, including those from OPEN FORUM presentations, and state-of-the-art reviews, instructional materials reviews, and teaching features are suggested. Because all papers will be submitted for peer-review, the deadline for submission is April 30, 1997! For more information about the Education Issue, contact Kris Williams, Assistant Editor, (972) 406-4665, or e-mail williams@aarc.org.
of minute ventilation during FA + VA + PEEP did not differ with those observed during FA + PEEP condition. Worsening of patient-ventilator interaction and breathing asynchrony occurred when VA was implemented. CONCLUSIONS: Application of PEEP to counterbalance PEPE and FA to unload the resistive burden provided the optimal conditions in such patients. Ventilator over-assistance and patient-ventilator asynchrony was observed when VA was added to this setting. The clinical use of proportional assist ventilation should be based on continuous measurements of respiratory mechanics.

BACKGROUND: When administered parenterally, furosemide, a loop diuretic, results in improved lung compliance and decreased airway resistance in infants with bronchopulmonary dysplasia (BPD). However, furosemide-induced diuresis results in hyponatremia, chloride deficiency, hypercalcemia, nephrocalcinosis, and rickets. In patients with asthma, inhaled furosemide has recently been demonstrated to inhibit the bronchoconstrictive effects of exercise, cold air hyperventilation, and antigen challenge. We hypothesized that inhaled furosemide will result in improved pulmonary mechanics in ventilated infants with BPD and will prevent the systemic complications of parenteral furosemide. OBJECTIVE: To determine the efficacy and safety of a single dose of inhaled furosemide on pulmonary mechanics in infants with severe BPD who are ventilator dependent at 21 days of age. DESIGN & METHODS: A randomized, double-blind, crossover study was performed on 9 infants with BPD, each serving as his own control. Each patient was randomized to receive an aerosol dose of furosemide (1 mg/kg in 2 mL of saline) or placebo (2 mL of saline) on the first day of the study and the other agent the following day of the study. Pulmonary mechanics were measured before and 1 and 2 hours after the inhalation using the Pulmonary Evaluation and Diagnostics System. RESULTS: Gestational age (mean ± SEM) was 29 ± 1 weeks; birthweight was 1.1 ± 0.1 kg, age at study was 47 ± 6 days; and weight at study was 1.8 ± 0.2 kg. There was no significant change in the pulmonary function measurements before treatment and 1 or 2 hours after treatment with either placebo or furosemide. Baseline and 2-hour values were: dynamic compliance (mL/cm-H2O/kg): 0.46 ± 0.03 to 0.50 ± 0.03 (placebo) and 0.50 ± 0.02 to 0.51 ± 0.02 (furosemide); dynamic resistance (cm-H2O/L/s): 18 ± 9 to 106 ± 7 (placebo) and 111 ± 8 to 105 ± 7 (furosemide); and tidal volume (mL/kg): 8.6 ± 0.5 to 8.9 ± 0.5 (placebo) and 8.9 ± 0.2 to 9.4 ± 0.3 (furosemide). CONCLUSION: We conclude that, under the conditions of our study, a single dose of 1 mg/kg inhaled furosemide does not improve the pulmonary mechanics in ventilator-dependent infants with severe BPD.

Clinical practice guidelines are becoming pervasive in pediatrics and newborn medicine. They have spanned a wide range of primary care practice parameters from treating otitis media with effusion, to performing complex surgery for congenital heart disease, and management of respiratory distress syndrome and coordinating discharge from the neonatal intensive care unit. Administrators believe that using clinical practice parameters reduces health care costs, improves quality of care, and limits malpractice liability. Practice parameters and guidelines have grown in use because powerful interests—third-party payers, insurers, and health maintenance organizations, as well as hospital administrators—bent on reducing variable costs of care and contracting for capitated care—champion their development, implementation, and monitoring. Economic credentialing of physicians with excessive variances without risk-adjusting for other than average patients is problematic and remains unchecked partly because of the fundamental characteristics of the evolving health care industry, in which costs are more easily measured than quality. For highly autonomous physicians this standardization of medical decision making may represent a difficult transition into corporate practice by realigning traditional values of the doctor-patient relationship. However, because guidelines are almost certainly here to stay, pediatricians and neonatologists need to think critically about how their content and method of implementation, monitoring, and modification may influence medical teaching and decision making in the future. If guidelines are introduced primarily as a cost-savings or containment tool that ignores the impact on the quality of care and restricts necessary care for infants and children, especially those with chronic illness or who are developmentally at risk, then neonatologists and pediatricians must be quick and determined to challenge the potentially damaging use of practice parameters or guidelines. Furthermore, there are many medicolegal implications of guideline implementation that may not

Abstracts

The 1996 bound volume of Respiratory Care is now available.

Volume 41 is bound in a blue buckram cover and may be imprinted, free of charge, with your name or the name of your organization. Each volume is $40 for current AARC members and $80 for nonmembers. Shipping is included for U.S. and Canadian residents.

Available for a limited time, the 1989 and 1990 bound volumes are discounted to 30% (members) and 70% (nonmembers). The 1992-1994 bound volumes are available for 35% (members) and 75% (nonmembers).

Orders must be prepaid, include check, institutional purchase order, or valid credit card number.

- 1996 volume at 40/80
- 1995 volume at 40/80
- 1994 volume at 35/75
- 1993 volume at 35/75

- Check
- Purchase Order
- Visa
- Mastercard

C.C. or P.O. #_________ Exp. date_____

Signature

AARC Member #___________

Name

Institution

Address

City Zip

State

Name to imprint

Doedalus Enterprises Inc • PO Box 29686 • Dallas TX 75229

FAX (972) 484-6010
ABSTRACTS

At Providence Health System in Alaska, it's our uncom-promising mission. And our tradition. As the premier employer of healthcare professionals, we attribute our success to a philosophy which emphasizes family value, respect for the individ-ual, and care provided with dignity and compassion. Consider becoming part of our distinguished family on your Path to excellence in Anchorage, Alaska.

Pediatric & Adult Respiratory Therapists Qualifications must include an Associate's degree in Respiratory Care, certified or registered by the National Board of Respiratory Care, current BLS, and obtain ACLS, PALS, NRNP training within first year of hire. One year of experience as a respiratory therapist is preferred.

At Providence Health System in Alaska, becoming part of our family also means sharing in our generous benefits and compensation package. Please send your resume to: Linda Duwa, Human Resource Services, Providence Health System in Alaska, A0203, PO Box 96604, Anchorage, AK 99519-6604. Ph (907) 261-3061. Fax (907) 261-3069. An EOE. Committed to a culturally diverse workplace.

1997 OPEN FORUM

is your to the of the respiratory care profession! The issues that are near and dear to your are valuable to the entire of AARC professionals.

Your original study, evaluation of a method, device, or protocol, or a case or case study is important. Submitting it is as easy as calling the editorial office at 972-243-2272 or looking for the the 1997 Call for Abstracts in each issue of RESPIRATORY CARE.

Early Deadline: March 17, 1997
Final Deadline: May 27, 1997

Circle 102 on reader service card
1997 Call for Abstracts
RESPIRATORY CARE • OPEN FORUM

The American Association for Respiratory Care and its science journal, RESPIRATORY CARE, invite submission of brief abstracts related to any aspect of cardiorespiratory care. The abstracts will be reviewed, and selected authors will be invited to present posters at the OPEN FORUM during the AARC International Convention and Exhibition in New Orleans, Louisiana, December 6-9, 1997. Accepted abstracts will be published in the November 1997 issue of RESPIRATORY CARE. Membership in the AARC is not required for participation.

SPECIFICATIONS—READ CAREFULLY!

An abstract may report (1) an original study, (2) the evaluation of a method, device or protocol, or (3) a case or case series. Topics may be aspects of adult acute care, continuing care/rehabilitation, perinatology/pediatrics, cardio-pulmonary technology, or health care delivery. The abstract may have been presented previously at a local or regional—but not national—meeting and should not have been published previously in a national journal. The abstract is the only evidence by which the reviewers can decide whether the author should be invited to present a poster at the OPEN FORUM. Therefore, the abstract must provide all important data, findings, and conclusions. Give specific information. Do not write such general statements as “Results will be presented” or “Significance will be discussed.”

Essential Content Elements

Original study. Abstract must include (1) Background: statement of research problem, question, or hypothesis; (2) Method: description of research design and conduct in sufficient detail to permit judgment of validity; (3) Results: statement of research findings with quantitative data and statistical analysis; (4) Conclusions: interpretation of the meaning of the results.

Method, device, or protocol evaluation. Abstract must include (1) Background: identification of the method, device, or protocol and its intended function; (2) Method: description of the evaluation in sufficient detail to permit judgment of its objectivity and validity; (3) Results: findings of the evaluation; (4) Experience: summary of the author’s practical experience or a lack of experience; (5) Conclusions: interpretation of the evaluation and experience. Cost comparisons should be included where possible and appropriate.

Case report. Abstract must report a case that is uncommon or of exceptional educational value and must include (1) Introduction: Relevant basic information important to understanding the case. (2) Case Summary: Patient data and response, details of interventions. (3) Discussion: Content should reflect results of literature review. The author(s) should have been actively involved in the case and a case-managing physician must be a co-author or must approve the report.

Abstract Format and Typing Instructions

Accepted abstracts will be photographed and reduced by 40%; therefore, the size of the original text should be at least 10 points. A font like Helvetica or Geneva makes the clearest reproduction. The first line of the abstract should be the title in all capital letters. Title should explain content. Follow title with names of all authors (including credentials, institution(s), and location; underline presenter’s name). Type or electronically print the abstract single spaced in a single paragraph in the space provided on the abstract blank. Insert only one letter space between sentences. Text submission on diskette is encouraged but must be accompanied by a hard copy. Identifiers will be masked (blinded) for review. Data may be submitted in table form, and simple figures may be included provided they fit within the space allotted. No figures, illustrations, or tables are to be attached to the abstract form. Provide all author information requested. A clear photocopy of the abstract form may be used. Standard abbreviations may be employed without explanation; new or infrequently used abbreviations should be spelled out on first use. Any recurring phrase or expression may be abbreviated, if it is first explained. Check the abstract for (1) errors in spelling, grammar, facts, and figures; (2) clarity of language; and (3) conformance to these specifications. An abstract not prepared as requested may not be reviewed. Questions about abstract preparation may be telephoned to the editorial staff of RESPIRATORY CARE at (972) 406-4667.

Deadline Allowing Revision

Authors may choose to submit abstracts early. Abstracts postmarked by March 17, 1997 will be reviewed and the authors notified by letter only to be mailed by April 25, 1997. Rejected abstracts will be accompanied by a written critique that should, in many cases, enable authors to revise their abstracts and resubmit them by the final deadline (May 27, 1997).

Final Deadline

The mandatory Final Deadline is May 27, 1997 (postmark). Authors will be notified of acceptance or rejection by letter only. These letters will be mailed by August 15, 1997.

Mailing Instructions

Mail (Do not fax!) 2 clear copies of the completed abstract form, diskette (if possible), and a stamped, self-addressed postcard (for notice of receipt) to:
RESPIRATORY CARE OPEN FORUM
11030 Ables Lane
Dallas TX 75229-4593
1997 Respiratory Care Open Forum
Abstract Form

1. Title must be in all upper case (capital) letters, authors' full names and text in upper and lower case.

2. Follow title with all authors' names including credentials (underline presenter's name), institution, and location.

3. Do not justify (i.e., leave a 'ragged' right margin).

4. Do not use type size less than 10 points.

5. All text, tables, and figures must fit into the rectangle shown.

6. Submit 2 clean copies. This form may be photocopied if multiple abstracts are to be submitted.

Mail original & 1 photocopy (along with postage-paid postcard) to
Respiratory Care Open Forum
11030 Ables Lane
Dallas TX 75229-4593

Early deadline is March 17, 1997 (postmark)

Final deadline is May 27, 1997 (postmark)
AARC & AFFILIATES

April 1—Indiana, Kentucky, and Ohio Societies
24th Annual Region II for Respiratory Care Meeting, “Winning the Game of Respiratory Care,” at the Hyatt Regency Hotel and the Albert Sabin Convention Center, Cincinnati, Ohio. Contact: 1-800-691-3046, mailbox #1, or http://www.bright.net/~dsibb/Reg2rc.htm on the Internet.

April 4—Tennessee Society

April 15–16—Pennsylvania Society
32nd Annual Southeast District Seminar, “Happy 50th Respiratory Care,” at the Airport Ramada, Essington, Pennsylvania. Contact: Angie Herstine at (609) 784-0340 or Ann Cusano at (215) 646-7300 ext 428.

April 25—Texas Society’s Alamo District, the University of Texas Health Science Center at San Antonio (UTHSCSA), and Wilford Hall Medical Center
Seminar at the San Antonio Municipal Auditorium and Holiday Inn Riverwalk North, San Antonio, Texas. CRCE: Credit has been requested. Contact: Respiratory Care, UTHSCSA, (210) 567-3706.

May 20–21—Connecticut Society

June 5–6—Maine Society
Maine Event Conference at the Marriott in South Portland, Maine. CRCE: 5/day, all Category I. Contact: Bobbie Crockett, (207) 262-1632.

June 11–13—Texas Society
Annual convention, “The Star of Texas,” at the Marriott Riverwalk Hotel, San Antonio, Texas. Management Training Institute seminar is scheduled. CRCE: Credit has been requested. Contact: TSRC at (972) 680-2454.

OTHER MEETINGS

March 26–27—Johns Hopkins Hospital Department of Respiratory Care
Two-day seminar, “Lectures in Adult and Pediatric Respiratory Care,” Baltimore, Maryland. Lunch is provided both days. Contact: Jennifer Lee at (410) 955-9277.

April 17–18—California Society for Pulmonary Rehabilitation
Annual conference, “Bridging the Waters—A Continuum of Care,” at the Capitol Plaza Holiday Inn, Sacramento, California. Conference registration: $185. Preconference session, “Components of a Successful Pulmonary Rehab Program,” is April 16; registration: $75. Contact: Barbara Rife, CSPR Conference Co-Chair, Mercy San Juan Hospital, Pulmonary Rehabilitation, 6501 Coyle Ave, Carmichael CA 95608, (916) 537-5299.

May 16–21—American Lung Association/American Thoracic Society (ALA/ATS)
If you think there's nothing good on TV anymore...

pop in a video and catch up on what's new in Respiratory Care!

A Limited Edition Video Series
Professor's Rounds in Respiratory Care

The Professor's Rounds in Respiratory Care — up to 90 minutes of high-impact instruction on the topics important to every respiratory care practitioner.

These high quality, stimulating, and informative videos, presented in a lively format, are designed to be your personal resource, inservice program, or classroom teaching tool.

Please Note: Videotapes do not qualify viewer for CRCE credit.
Choose From These Hot Topics:

Pressure Support During Mechanical Ventilation — Item VC21
Defines pressure support, its differences, and how it is used during ventilator weaning. Also teaches the clinical situations in which it may be useful and how to determine appropriate levels in different clinical situations.

Hemodynamic Monitoring — Item VC22
Discusses the different forms of invasive and noninvasive hemodynamic monitoring, their main complications, and appropriate levels. Discusses how positive end-expiratory pressure and other therapies affect hemodynamic parameters.

Weaning from Mechanical Ventilation — Item VC23
Covers ventilator weaning approaches, how they differ, and the differences in weaning from short- and long-term mechanical ventilation. Also teaches the measurements used in predicting ability to wean, and the main causes for weaning failure.

Pulmonary Rehabilitation — Item VC24
Covers the components of an effective pulmonary rehabilitation program, selecting appropriate candidates, identifying and setting both short- and long-term patient goals. Also covers assessment of a patient’s progress and follow-up.

Aerosol Administration — Item VC25
Focuses on the basic principles of aerosol administration and the efficacy and use of metered-dose inhalers versus nebulizers. Also instructs in the administration and assessment of the effects of bronchodilators during mechanical ventilation and the techniques for the correct patient use of aerosol devices.

Prevention of Postoperative Atelectasis and Pneumonia — Item VC26
Identifies the patients at increased risk of postoperative atelectasis and pneumonia, and how to decrease the risk of nosocomial pneumonia. Also covers its pathogenesis and the roles of chest physiotherapy, bronchoscopy, and other therapies in managing acute postoperative complications.

Patient-Focused Care — Item VC31
Teaches the assumptions of care when employing the model, its ramifications, the changing roles for employees in ancillary service departments, and the multifaceted nature of the model.

Application of Positive Airway Pressure Without Intubation — Item VC32
Covers short-term application in the critical care setting in the treatment of acute, life-threatening conditions and elective, long-term application in home care. Includes a discussion of bi-level positive airway pressure via the BiPAP® device.

Therapist-Driven Protocols in Respiratory Care — Item VC33
Teaches how therapist-driven protocols can assist practitioners in providing better patient care and containing costs. Provides an overview to the challenges of implementing protocols and how to gain the support of key players in the health care team.

Monitoring Oxygenation in the Critically Ill Patient — Item VC34
Focuses on the determinants of tissue oxygenation in the critically ill patient and the techniques available for assessment. Also discusses “supply dependence” of tissue oxygen utilization in ARDS and how it affects management.

Discusses the reasons for ordering PFTs and how to interpret their results. Includes the clinical settings in which assessment of pulmonary function is most helpful in patient management.

Unconventional Methods for Adult Oxygenation and Ventilation Support — Item VC36
Provides an overview of new and experimental techniques for adult oxygenation and ventilation support. Discusses the techniques, their rationale, methods of application, and experimental evidence of effectiveness.

Tuberculosis: Implications for Patients and Practitioners — Item VC41
Reviews the reasons for the increased incidence of tuberculosis and the implications for patients and practitioners including discussion of medication-resistant TB, universal precautions for patients and practitioners, emergency room procedures, and treatment procedures.

Therapist-Driven Protocols: Implementation — Item VC42
Discusses therapist-driven protocol (TDP) implementation strategies, research, staff selection, training, obstacles, attitudes of other staff, and the results of TDP implementation.

New Strategies for Asthma Management — Item VC43
Focuses on patient self-management techniques and education, peak flow meter use, MAEPP therapy goals, medication delivery devices, medications, and emergency room procedures.

Blood Gas and Related Measurements: Laboratory versus Bedside Devices — Item VC44
Outlines techniques and theories including pressure limited ventilation, reduced peak pressure, permissive hypercapnia, weaning and imposed work of breathing, and the next generation of ventilators.

Only $99 Each for AARC Members ($150 nonmembers)
Order all 18 and save 25%, Item #VC99 — $1,336.50 ($2,025 nonmembers)

Please send me the Professor’s Rounds in Respiratory Care videos listed below:

<table>
<thead>
<tr>
<th>Item #</th>
<th>Quantity</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total =

Payment enclosed $ Charge to Purchase Order #
Charge to my □ Visa □ MasterCard. Card expires ___/___ Card # _________ Signature
Name/Institution ____________________________ AARC Member Number
Address ____________________________ City/State/Zip

Mail to: AARC, 11030 Ables Ln., Dallas, TX 75229-4593 • (972) 243-2272 • FAX (972) 484-2720

A VHA Satellite Network Production from the American Association for Respiratory Care
Infection Control Products. Afassco Inc announces a line of infection control products that protects health care workers from blood borne pathogens. According to the company, the products—Stat-5, a hard-surface disinfectant; SteriDerm, an antimicrobial hand spray; SteriWash, an antimicrobial hand soap; and Medi-Wipes, single-use antimicrobial towelettes—protect against hepatitis, human immunodeficiency virus, and tuberculosis. The products can be used in first aid, blood borne pathogen, and biohazard kits. For details about each product, circle Reader Service Number 160.

Aerosol System. AMICI adds the Swirler™ Aerosol System to its line of products. The Swirler is designed for use with radioaerosols. The company claims that the plastic device delivers aerosols of efficient particle size to the airways and alveoli for use in radioaerosol studies and diagnostic procedures. The Swirler also allows medications to be delivered for use in the treatment of respiratory disease. The device is designed for single-patient use and has a variety of accessories to accommodate different applications. Circle Reader Service Number 161 for more details.

Cylinder & Liquid Portables Cart. A lightweight cart designed to carry both liquid oxygen portables and E oxygen gas cylinders, debuts with An- donian Cryogenics Inc. The company says the cart provides space for both E cylinders and liquid portables and is useful for home health care personnel. The cart has interlocking nylon straps for cylinder use and a 5 1/2 in. × 8 1/4 in. basket for portables use. Information is available; circle Reader Service Number 162.

Polysomnography System. Biologic Systems Corporation introduces the Sleepscan Traveler™ monitoring system. The system—designed for in-home monitoring—uses a battery and weighs < 2 pounds. The company says that the monitor is programmable, available in 8-, 19-, or 27-channel platforms, and features a built-in pulse oximeter and calibrator and impedance checks. Data can be viewed simultaneously on 1 screen. Other features include the data analysis software and Smart-Pack™ data compression. For details or to learn more about the ambulatory electroencephalog-ram testing system, circle Reader Service Number 163.

Electrodes. Burdick includes Heart-Line DuraFoam and Comfort Tape wet-gel electrodes in its product line. The electrodes are designed for short-term monitoring and use in cardiac stress testing, Holter monitoring, and SAECG applications. Burdick claims that the electrodes feature soft, pliable materials that mold to body contours, low-chloride gel and gentle adhesives for decreased skin irritation, and a stabilization ring that anchors the electrode to the body for stable ECG baselines and reduced motion artifact. Circle Reader Service Number 164 for more information.

Pediatric Peak Flow Meter & Trainer. To help young children produce consistent peak flow scores, Clement Clarke offers the miniaturized Aerodynamic Flow System (AFS) low-range peak flow meter and Windmill Trainer. The peak flow meter is designed to capture the lower peak flows of young patients. When used with the Windmill
ENDOTRACHEAL TUBE/BITE BLOCK. The Thumb, developed by the Thumbs Up Group, is an endotracheal tube (ETT)/bite block device designed to stabilize ETTS and provide comfort to mechanically ventilated patients. According to the manufacturer, the Thumb is designed for better oral hygiene in intubated patients, eliminates sticky tape, and helps prevent external oral-dental breakdown. The system consists of a combination bite block-ETT holder in bright orange, 36 in. of umbilical tape, and 2 half-moon-shaped, nonporous sponges. The device can be used in pediatric patients who are older than 8 years and in adults. To learn more about the system, circle Reader Service Number 166.

POCKET POLYGRAPH. The NightOwl™ Pocket Polygraph is now included in Respiration Inc’s line of products. The NightOwl offers diagnostic sleep recording in a compact package, allows up to 15 channels for recording patient data, and uses low power from a rechargeable NiCad battery for 10 hours of use. The polygraph’s software allows data to be viewed in real time and correlates data for patient reports via IBM-type computers. The polygraph is made of solid-state components, has a built-in impedance meter, and is capable of oximetry. Circle Reader Service Number 167 for details.

ASTHMA MEDICATION. Zeneca Pharmaceuticals releases a new asthma medication. According to Zeneca, the U.S. Food & Drug Administration (FDA) has cleared Accolate® (zafirlukast) tablets for the preventive and chronic treatment of asthma in adults and children 12 years of age and older. The oral medication is the first leukotriene receptor antagonist to receive FDA clearance; and the drug works by blocking the effects of leukotrienes, natural substances in the body that may contribute to asthma symptoms. To receive information about indications, contraindications, dosing requirements, and a complete fact sheet, circle Reader Service Number 168.

DIFFERENTIAL PRESSURE TRANSDUCER. A low-range variable reluctance differential pressure transducer—the MP 45-871—is released by Validyne Engineering. The transducer is used for pulmonary measurements in conjunction with the Validyne carrier demodulators. According to the company, the transducer ranges ±2 to ±880 cm H₂O, offers a pressure cavity volume of 0.16 cc, and uses a volumetric displacement of 0.016 cc. The device is made of stainless steel, monitors pulmonary flow, volume, and pressure, and supports electronics for interface with chart recorders or computers. Information about Carrier demodulators and the MP 45-871 is available from the manufacturer. Circle Reader Service Number 171.

PRODUCT BROCHURE. Polyfoam Packers Corporation offers a new product brochure for mail-order and home care health services. According to the company, the brochure includes information about Thermosafe® insulated storage chests, field carriers, specimen transporters, therapeutic cold packs, and more. To receive a free brochure, circle Reader Service Number 170.

Trainer, training children to use the peak flow meter is easier, the company says. The trainer clips to the Mini AFS meter and can be positioned close to the mouthpiece, where a small blow turns the sails; as the child progresses the Windmill may be moved further away to build technique. For details from the company, circle Reader Service Number 165.
Manuscript Preparation Guide

General Information

RESPIRATORY CARE welcomes original manuscripts related to respiratory care and prepared according to these Instructions. Manuscripts are blinded and reviewed by professionals who are experts in their fields. Authors are responsible for all aspects of the manuscript and receive galleys to proofread before publication. Each accepted manuscript is copyedited so that its message is clear and it conforms to the Journal's style. Published papers are copyrighted by Daedalus Inc and may not be published elsewhere without permission.

Editorial consultation is available at any stage of planning or writing. On request, specific guidance is provided for all publication categories. These Instructions and related materials are available. Write to RESPIRATORY CARE, 11030 Ables Lane, Dallas TX 75229-4593, call (972) 243-2272, or fax (972) 484-6010.

Publication Categories & Structure

Research Article: A report of an original investigation (a study). It includes a Title Page, Abstract, Introduction, Methods, Results, Discussion, Conclusions, Product Sources, Acknowledgments, References, Tables, Appendices, Figures, and Figure Captions.

Evaluation of Device/Method/Technique: A description and evaluation of an old or new device, method, technique, or modification. It has a Title Page, Abstract, Introduction, Description of Device/Method/Technique, Evaluation Methods, Evaluation Results, Discussion, Conclusions, Product Sources, Acknowledgments, References, Tables, Appendices, Figures, and Figure Captions.

Case Report: A report of a clinical case that is uncommon, or was managed in a new way, or is exceptionally instructive. All authors must be associated with the case. A case-managing physician must either be an author or furnish a letter approving the manuscript. Its components are Title Page, Abstract, Introduction, Case Summary, Discussion, References, Tables, Figures, and Figure Captions.

Review Article: A comprehensive, critical review of the literature and state-of-the-art summary of a pertinent topic that has been the subject of at least 40 published research articles. Title Page, Outline, Introduction, Review of the Literature, Summary, Acknowledgments, References, Tables, Appendices, and Figures and Captions may be included.

Overview: A critical review of a pertinent topic that has fewer than 40 published research articles.

Update: A report of subsequent developments in a topic that has been critically reviewed in this Journal or elsewhere.

Point-of-View Paper: A paper expressing personal but substantiated opinions on a pertinent topic. Title Page, Text, References, Tables, and Illustrations may be included.

Special Article: A pertinent paper not fitting one of the foregoing categories may be acceptable as a Special Article. Consult with the Editor before writing or submitting such a paper.

Editorial: A paper drawing attention to a pertinent concern; it may present an opposing opinion, clarify a position, or bring a problem into focus.

Letter: A signed communication about prior publications in this Journal or about other pertinent topics. Tables and illustrations may be included. Mark "For publication."

Blood Gas Corner: A brief, instructive case report involving blood-gas values—with Questions, Answers, and Discussion.

Drug Capsule: A mini-review paper about a drug or class of drugs that includes discussions of pharmacology, pharmacokinetics, and pharmacotherapy.

Graphics Corner: A brief case report incorporating waveforms for monitoring or diagnosis—with Questions, Answers, and Discussion.

Kittredge's Corner: A brief description of the operation of respiratory care equipment—with information from manufacturers and editorial comments and suggestions.

PFT Corner: Like Blood Gas Corner, but involving pulmonary function tests.

Cardiorespiratory Interactions: A case report demonstrating the interaction between the cardiovascular and respiratory systems. It should be a patient-care scenario; however, the case—the central theme—is the systems interaction. CRI is characterized by figures, equations, and a glossary. See the March 1996 issue of RESPIRATORY CARE for more detail.

Test Your Radiologic Skill: Like Blood Gas Corner, but involving pulmonary medicine radiography and including one or more radiographs, may involve imaging techniques other than conventional chest radiography.

Review of Book, Film, Tape, or Software: A balanced, critical review of a recent release.

Preparing the Manuscript

Print on one side of white bond paper, 8.5 in x 11 in. (216 x 279 mm) with margins of at least 1 in. (25 mm) on all sides of the page. Use double-spacing throughout the entire manuscript. Use
a standard font (eg, Times, Helvetica, or Courier) at least 10 points in size, and do not use italics except for special emphasis. Number all pages in upper-right corners. Indent paragraphs 5 spaces. Do not justify. Do not put authors' names or other identification anywhere except on the table page. Repeat title only (no authors) on the abstract page. Begin each of the following on a new page: Title Page, Abstract, Text, Product-Sources List, Acknowledgments, References, each Table, and each Appendix. Use standard English in the first person and active voice.

Center main section headings on the page and type them in capital and small letters (eg. Introduction, Methods, Results, Discussion). Begin subheadings at the left margin and type them in capital and small letters (eg. Patients, Equipment, Statistical Analysis).

References. Cite only published works as references. Manuscripts accepted but not yet published may be cited as references: designate the accepting journal, followed by (in press). Please provide 3 copies of the in-press article for reviewer inspection. Cite references in the text with superscript numerals. Assign numbers in the order that references are first cited. On the reference page, list the cited works in numerical order. Follow The Journal's style for references. Abbreviate journal names as in Index Medicus. List all authors.

Article in a journal carrying pagination throughout volume:

Corporate author journal article:

Article in journal supplement: (Journals differ in their methods of numbering and identifying supplements. Supply sufficient information to promote retrieval.)

Abstract in journal: (Abstracts citations are to be avoided. Those more than 3 years old should not be cited.)

Editorial in journal:

Editorial with no author given:

Letter in journal:

Paper accepted but not yet published:
9. Hess D. New therapies for asthma. Respir Care (year, in press).

Personal author book: (For any book, specific pages should be cited whenever possible.)

Corporate author book:

Chapter in book with editor(s):

Tables. Use consecutively numbered tables to display information. Start each table on a separate page. Number and title the table and give each column a brief heading. Place explanations in footnotes, including all nonstandard abbreviations and symbols. Key the footnotes with conventional designations (asterisk, dagger, double dagger, etc) in consistent order, placing them superscript in the table body. Do not use horizontal or vertical rules or borders. Do not submit tables as photographs, reduced in size, or on oversize paper. Use the same typeface as in the text.

Illustrations. Graphs, line drawings, photographs, and radiographs are figures. Use only illustrations that clarify and augment the text. Number them consecutively as Fig. 1, Fig. 2, and so forth according to the order by which they are mentioned in the text. Be sure all figures are cited. If any figure was previously published, include copyright holder’s written permission to reproduce. Figures for publication must be of professional quality. Data for the original graphs should be available to the Editor upon request. If color is essential, consult the Editor for more information. In reports of animal experiments, use schematic drawings, not photographs. A letter of consent must accompany any photograph of a person. Do not place titles and detailed explanations on figures; put this information in figure captions. If possible, submit radiographs as prints and full-size copies of film.

Drugs. Identify precisely all drugs and chemicals used, giving generic names, doses, and routes of administration. If desired, brand names may be given in parentheses after generic names. Drugs should be listed on the product-sources page.

Commercial Products. In parentheses in the text, identify any commercial product (including model number if applicable) the first time it is mentioned, giving the manufacturer’s name, city, and state or country. If four or more products are mentioned, do not list any manufacturers in the text; instead, list them on a Product Sources page at the end of the text, before the References. Provide model numbers when available and manufacturer’s suggested price, if the study has cost implications.
Ethics. When reporting experiments on human subjects, indicate that procedures were conducted in accordance with the ethical standards of the institution's committee on human experimentation. State that informed consent was obtained. Do not use patient's names, initials, or hospital numbers in text or illustrations. When reporting experiments on animals, indicate that the institution's policy, a national guideline, or a law on the care and use of laboratory animals was followed.

Statistics. Identify the statistical tests used in analyzing the data, and give the prospectively determined level of significance in the Methods section. Report actual p-values in Results. Cite only textbook and published article references to support choices of tests. Identify any general-use or commercial computer programs used, naming manufacturers and their locations. These should be listed on the product-sources page.

Units of Measurement. Express measurements of length, height, weight, and volume in metric units appropriately abbreviated; temperatures in degrees Celsius; and blood pressures in millimeters of mercury (mm Hg). Report hematologic and clinical-chemistry measurements in conventional metric and in SI (Système Internationale) units. Show gas pressures (including blood gas tensions) in torr. List SI equivalent values, when possible, in brackets following non-SI values—for example, "PEEP, 10 cm H₂O [0.981 kPa]." For conversion to SI, see RESPIRATORY CARE 1988;33(10):861-873 (Oct 1988) and 1989;34(2):145 (Feb 1989).

Conflict of Interest. Authors are asked to disclose any liaison or financial arrangement they have with a manufacturer or distributor whose product is part of the submitted manuscript or with the manufacturer or distributor of a competing product. (Such arrangements do not disqualify a paper from consideration and are not disclosed to reviewers.) A statement to this effect is included on the cover-letter page.

Abbreviations and Symbols. Use standard abbreviations and symbols. Avoid creating new abbreviations. Avoid all abbreviations in the title and unusual abbreviations in the abstract. Use an abbreviation only if the term occurs several times in the paper. Write out the full term the first time it appears, followed by the abbreviation in parentheses. Thereafter, employ the abbreviation alone. Never use an abbreviation without defining it. Standard units of measurement can be abbreviated without explanation (eg, 10 L/min, 15 torr, 2.3 kPa).

Please use the following forms: cm H₂O (not cmH₂O); f (not bpm); L (not l); L/min (not LPM, l/min, or lpm); mL (not ml); mm Hg (not mmHg); pH (not Ph or PH); p > 0.001 (not p>0.001); s (not sec); S₉₀ (pulse-oximetry saturation).

Submitting the Manuscript

Mail three copies of the manuscript, figures, diskette, and the Cover Letter & Checklist to RESPIRATORY CARE, 11030 Ables Lane, Dallas TX 75229-4593. Do not fax manuscripts. Protect figures with cardboard. Keep a copy of the manuscript and figures. Receipt of your manuscript will be acknowledged.

Computer Diskettes. A manuscript may be submitted on a Macintosh or IBM-DOS diskette. Macintosh documents on 3.5 in. diskettes written in Microsoft Word versions 4.0 and 5.0 are preferred. However, we can convert most documents (including PC-DOS format) to our format. Label each diskette with date; author's name; name of word-processing program and version used to prepare documents; and filename(s). Do not write on a diskette except with a felt-tipped pen. Tables and figures must be in their own separate files, with software identified. Supply 3 hard copies of the manuscript with the diskette.

Prior and Duplicate Publication. Work that has been published or accepted elsewhere should not be submitted. In special instances, the Editor may consider such material, provided that permission to publish is given by the author and original publisher. Please consult the Editor before submitting such work.

Authorship. All persons listed as authors should have participated in the reported work and in the shaping of the manuscript; all must have proofread the submitted manuscript; and all should be able to publicly discuss and defend the paper's content. A paper with corporate authorship must specify the key persons responsible for the article. Authorship is not justified solely on the basis of solicitation of funding, collection or analysis of data, provision of advice, or similar services. Persons who provide such ancillary services exclusively may be recognized in an Acknowledgments section.

Permissions. The manuscript must be accompanied by copies of permissions to reproduce previously published material (figures or tables); to use illustrations of, or report sensitive personal information about, identifiable persons; and to name persons in the Acknowledgments section.

Reviewers. Please supply the names, credentials, affiliations, addresses, and phone/fax numbers of three professionals whom you consider expert on the topic of your paper. Your manuscript may be sent to one or more of them for blind peer review.

Editorial Office:
RESPIRATORY CARE
11030 Ables Lane
Dallas TX 75229-4593
(972) 243-2272 (telephone)
(972) 484-6010 (fax)
Cover Letter & Checklist

A copy of this completed form must accompany all manuscripts submitted for publication.

Title of Paper: __

Publication Category: __

Authors: ___

Author to be Contacted: ___________________________________ Phone: ___________ FAX: ___________

Mailing Address of Contact Author: __

Reprints: □ Yes □ No

"We, the undersigned, have all participated in the work reported, proofread the accompanying manuscript, and approve its submission for publication." Please print and include credentials, title, institution, academic appointments, city and state. If more than 4 authors, please use another copy of this form.

*Author Data: __

Author Signature/Date ____________________________

Has this research been presented in a public forum? □ Yes □ No

If yes, where, when and by whom? __

Has this research received awards? □ Yes □ No

If yes, please describe. ___

Do any of the authors have a financial interest in the products mentioned in this paper or competing products? □ Yes □ No If yes, please disclose: ___

Checklist:

□ Is double-spacing used throughout entire manuscript?

□ Are all pages numbered in upper-right corners?

□ Are all references, figures, and tables cited in the text?

□ Has the accuracy of the references been checked, and are they correctly formatted?

□ Have SI values been provided?

□ Has all arithmetic been checked?

□ Have generic names of drugs been provided?

□ Have necessary written permissions been provided?

□ Have authors’ names been omitted from text and figure labels?

□ Have copies of "in press" references been provided?

□ Has the manuscript been proofread by all the authors?
Notices of competitions, scholarships, fellowships, examination dates, new educational programs, and the like will be listed here free of charge. Items for the Notices section must reach the Journal 60 days before the desired month of publication (January 1 for the March issue, February 1 for the April issue, etc.). Include all pertinent information and mail notices to RESPIRATORY CARE Notices Dept, 11030 Ables Lane, Dallas TX 75229-4593.

RESPIRATORY CARE Special Issues

The April 1997 issue of the Journal features papers and discussions from the Consensus Conference: Noninvasive Positive Pressure Ventilation held in Vail, Colorado, October 4-6, 1996. The conference was chaired by Neil R McIntyre MD and Dean R Hess PhD RRT. Authors include David J Pierson MD, Robert M Kacmarek PhD RRT, John R Bach MD, W Gerald Teague MD, Nichols R Hill MD, Gordon D Rubenfeld MD, Richard G Wunderink MD, Dean R Hess PhD RRT, and Robert E Turner RRT.

September 1997 issue of the Journal will be devoted to education—respiratory care formal programs and curriculum, continuing and in-service education, and patient education. Original studies, state-of-the-art reviews, teaching features, reviews of instructional materials, and other areas of education are encouraged. Send your unpublished manuscripts for peer review. For more details, call Kris Williams, Assistant Editor, (972) 406-4665.

Know the Area Code for AARC: 972

Phone: (972) 243-2272
Fax: (972) 484-2720 or (972) 484-6010

Note: If you're having difficulty reaching us at this area code—call your local long-distance provider.

Editorial Office via the Internet

Web browsers can now reach the RESPIRATORY CARE Editorial Office via e-mail. Questions about the status of a manuscript, writing guides, other AARC Web sites, Clinical Practice Guidelines, and more can be answered by our Editorial Assistant, Linda Barcus. Her e-mail address is barcus@aarc.org. Pat Brougher, Editor, can be reached at brougher@aarc.org; and Kris Williams, Assistant Editor, at williams@aarc.org.

Helpful Web Sites

- American Association for Respiratory Care
 http://www.aarc.org

- National Board for Respiratory Care
 http://www.nbrc.org

- Applied Measurement Professionals Inc
 http://www.applmeapro.com

- Food and Drug Administration
 http://www.fda.gov

- Center for Devices and Radiological Health
 http://www.fda.gov/cdrh/index.html

- Tuberculosis Information
 http://www.umdnj.edu/ntbc

The Lambda Beta Society

For information about the Lambda Beta Society—

the National Honor Society for the
Profession of Respiratory Care,
contact the Society Office at
1701 W Euless Blvd, Suite 200, Euless TX 76040
(817)283-4269.
John H “Jack” Emerson, AARC Honorary Member Dies

John H “Jack” Emerson, founder and president of J H Emerson Co in Cambridge, Massachusetts, and an American Association for Respiratory Care Honorary Member since 1982, died Tuesday, February 4, 1997. He was 90. Emerson improved the design for the ‘iron lung’ and was recognized as a leader in the development of medical devices, receiving 35 patents during his lifetime. He is survived by his wife, Madeleine, and two sons, William and George.

FDA Offers Regional Workshops

To help implement the Medical Devices: Current Good Manufacturing Practice Final Rule/Quality System Regulation, the Food and Drug Administration (FDA) is offering regional workshops. For information about a workshop near you, contact the representative in your area.

Northeast Region—George R Walden, 850 Third Ave, Brooklyn NY 11232, (718) 965-5300 ext 5528.

Southeast Region—Barbara Ward-Groves, 60 Eight St NE, Atlanta GA 30309, (404) 347-4001 ext 5256.

Southwest Region—Marie T Falcone, 7920 Elmbrook Dr Suite 102, Dallas TX 75247-4982, (214) 655-8100 ext 128.

Pacific Region—Mark S Roh, Oakland Federal Building, 1301 Clay Street Suite 1180-N, Oakland CA 94612-5217, (510) 637-3980.

The National Board for Respiratory Care—1997 Examination Dates and Fees

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination Date</th>
<th>Examination Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRTT Examination</td>
<td>March 8, 1997</td>
<td>$100 (new applicant)</td>
</tr>
<tr>
<td></td>
<td>Application Deadline: January 1, 1997</td>
<td>60 (reapplicant)</td>
</tr>
<tr>
<td></td>
<td>July 12, 1997</td>
<td>100 (new applicant)</td>
</tr>
<tr>
<td></td>
<td>Application Deadline: May 1, 1997</td>
<td>60 (reapplicant)</td>
</tr>
<tr>
<td></td>
<td>November 8, 1997</td>
<td>100 (new applicant)</td>
</tr>
<tr>
<td></td>
<td>Application Deadline: September 1, 1997</td>
<td>60 (reapplicant)</td>
</tr>
<tr>
<td>RRT Examination</td>
<td>June 7, 1997</td>
<td>100 Written only (new applicant)</td>
</tr>
<tr>
<td></td>
<td>Application Deadline: February 1, 1997</td>
<td>60 Written only (reapplicant)</td>
</tr>
<tr>
<td></td>
<td>December 6, 1997</td>
<td>110 CSE only (all applicants)</td>
</tr>
<tr>
<td>CPFT Examination</td>
<td>June 7, 1997</td>
<td>210 Both (new applicant)</td>
</tr>
<tr>
<td></td>
<td>Application Deadline: April 1, 1997</td>
<td>170 Both (reapplicant)</td>
</tr>
<tr>
<td>RPFT Examination</td>
<td>December 6, 1997</td>
<td>110 (new applicant)</td>
</tr>
<tr>
<td></td>
<td>Application Deadline: September 1, 1997</td>
<td>80 (reapplicant)</td>
</tr>
<tr>
<td>Perinatal/Pediatric Respiratory</td>
<td>March 8, 1997</td>
<td>160 (new applicant)</td>
</tr>
<tr>
<td>Care Specialty Examination</td>
<td>Application Deadline: November 1, 1996</td>
<td>130 (reapplicant)</td>
</tr>
</tbody>
</table>

For information about other services or fees, write to the National Board for Respiratory Care, 8310 Nieman Road, Lenexa KS 66214, or call (913) 599-1200, FAX (913) 541-0156, email nbrc-info@nbrc.org.
Authors in This Issue

Aranson, Robert ... 294
Bach, John R .. 306
Chatburn, Robert L ... 288
Chauhan, Digpal ... 300
Comroe, Julius H Jr ... 309
Davis, Thomas A ... 292
Harwood, Robert ... 294
Johnson, Julie .. 300
Keenan, Heather T ... 281
Larson, Dian ... 294
Martin, Lynn D ... 281
Matthewson Hugh S ... 292
Mishoe, Shelley C ... 307
Momir, Keith R .. 308
Thomas Goodfellow, Lynda .. 294
Volsko, Teresa A .. 288

Advertisers in This Issue

DHD Demolding Healthcare Division... Cover 3
IMPACT Instrumentation, Inc ... 260
Nellcor Puritan Bennett ... Cover 2
NovaMetrix Medical Systems Inc .. 258
Providence Health System/Alaska .. 322
Sherwood Medical .. Cover 4

COPYRIGHT INFORMATION. RESPIRATORY CARE is copyrighted by Daedalus Enterprises Inc. Reproduction in whole or in part without the express written permission of Daedalus Enterprises Inc is prohibited. Permission to photocopy material in this Journal for noncommercial purposes of scientific or educational advancement is granted. Anyone may, without permission, quote up to 500 words of material in this journal provided the quotation is for noncommercial use and RESPIRATORY CARE is credited. Longer quotation requires written approval by the author and publisher. Single reprints are available only from the authors. Reprints for commercial use may be purchased from Daedalus Enterprises Inc. For information and prices call (972) 243-2272.

DISCLAIMER. The opinions expressed in any article or editorial are those of the author and do not necessarily reflect the views of the Editors, the American Association for Respiratory Care (AARC), or Daedalus Enterprises Inc. Neither are the Editors, the AARC, or the Publisher responsible for the consequences of the clinical applications or use of any methods or devices described in any article or advertisement.

SUBSCRIPTION RATES. Individual subscription rates are $65 per year (12 issues), $125 for 2 years, and $185 for 3 years in the US and Puerto Rico. Rates are $80 per year, $155 for 2 years, and $230 for 3 years in all other countries (add $84 per year for air mail). Single copies when available cost $6; add $7 for air mail postage to overseas countries. Checks should be made payable to RESPIRATORY CARE and sent to the subscription office at 11030 Ables Lane, Dallas TX 75229-4593.

SUBSCRIPTION RATES FOR ASSOCIATIONS. An association may offer individual subscriptions of RESPIRATORY CARE to its members at a reduced rate. The rates based on membership are: $8.50 per year for 101-500 members; $8 for 501-1,500 members; $7.50 for 1,501-10,000 members; $6.50 for more than 10,000 members. For information, contact Ray Masferrer at (972) 243-2272.

CHANGE OF ADDRESS. Notify RESPIRATORY CARE as soon as possible of any change in address. Note the subscription number (from the mailing label) and your name, old address, and new address. Allow 6 weeks for the change. To avoid charges for replacement copies of missed issues, requests must be made within 60 days in the US and 90 days in other countries.

MANUSCRIPTS. The Journal publishes clinical studies, method/device evaluations, reviews, and other materials related to cardiopulmonary medicine and research. Manuscripts may be submitted to the Editorial Office, RESPIRATORY CARE, 11030 Ables Lane, Dallas TX 75229-4593. Instructions for authors are printed in every issue. An expanded version of the instructions is available from the editorial office.

Copyright © 1997, by Daedalus Enterprises Inc.
RESPIRATORY CARE

March 1997 Reader Service Reply Card

Expires 6/30/97

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Institution</th>
<th>Street</th>
<th>City/State/Zip</th>
</tr>
</thead>
</table>

For faster service, FAX to (609) 786-4415

Send Free Information on the Items Circled Below

(Exclude No More Than 15 Items)

| Items | 68 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 |
|--------------|-----|-------------|--------|----------------|

For AARC Membership Information, Circle 81.

For RESPIRATORY CARE Subscription Information, Circle 82.

Durable plastic construction, removable base, and linear, valved resistor promotes easy cleaning.

Easy to order.

To order your TheraPEP or a free catalog of DHD quality respiratory care products, call toll-free today:

1-800-847-8000

TheraPEP

Positive Expiratory Pressure Therapy System

DHD Healthcare

Innovator for respiratory care

Cincinnati, OH 45224 USA

FAX 315-667-2221

Customer Service FAX 315-667-5300

http://www.dhd.com

Circle 125 on reader service card
It’s easy to see why TheraPEP® is becoming the PEP therapy device of choice.

Easy to use.
COPD patients can master Positive Expiratory Pressure therapy quickly, and maintain an effective continuum of care away from hospital. TheraPEP improves secretion clearance, facilitates opening of airways and may be used for the treatment of atelectasis.

Easy to tolerate.
TheraPEP may reduce the need for postural drainage, and is ideal for patients unable to tolerate conventional chest physiotherapy.

Easy to read.
Highly visible pressure indicator provides immediate, visual feedback from any angle.

Easy to adjust.
Six fixed orifice options allow physicians to prescribe appropriate flow resistance levels for each patient.

Easy to carry.
Draw-string bag lets patients carry TheraPEP conveniently and discreetly.

Easy to clean.
Durable plastic construction, removable base, and linear, valved resistor promotes easy cleaning.

Easy to order.
To order your TheraPEP or a free catalog of DHD quality respiratory care products, call toll-free today:
1-800-847-8000
RESPIRADYNE® II
PLUS
PULMONARY FUNCTION/VENTILATION MONITOR
Graphic Printouts...Multi-Patient Memory...and Easy to Use

Results-Oriented Features At Cost Effective Prices
- New Graphic Forced Vital Capacity (FVC) document printout of Flow vs Volume and Volume vs Time
- New 10 patient memory with 8 pre-bronchodilator and 8 post-bronchodilator tests per patient and automatic calculation of % change
- New customizing software package
- New Slow Vital Capacity (SVC) monitoring
- Automatic determination of "best test"
- Knudson, ITS and ECCS reference nomograms
- Easy to operate

Performs A Complete Range Of Test Measurements

Forced Exhalation Parameters
- Forced Vital Capacity (FVC)
- Forced Expiratory Volume in One Second (FEV₁)
- FEV₁/FVC Ratio
- FVC Time
- Peak Flow
- Forced Expiratory Flow Between 25% and 75% of Vital Capacity (FEF 25-75%)
- Percent Extrapolated Volume (Vol. Extrapolated)

Weaning/Extubation Parameters
- Respiratory Rate (RR)
- Tidal Volume (TV)
- Minute Volume (MV)
- Slow Vital Capacity (SVC)
- Maximum Voluntary Ventilation (MVV)
- Negative Inspiratory Force (NIF)

For further information, call:
1-800-325-7472 (outside Missouri)
1-800-392-7318 (in Missouri)

Circle 157 on reader service card