Effective Inspired Oxygen Concentration Measured Via Transtracheal and Oral Gas Analysis

Gerald H Markovitz MD, James Colthurst MBBS, Thomas W Storer PhD, and Christopher B Cooper MD

BACKGROUND: The fraction of inspired oxygen (F_{IO_2}) is quoted for different oxygen delivery systems, but variations in inspiratory flow and tidal volume make precise measurement difficult. We developed a reliable method of measuring the effective F_{IO_2} in patients receiving supplemental oxygen. METHODS: Ten subjects with chronic hypoxemia breathed through a mouthpiece with a sampling probe connected to a mass spectrometer. Four of the 10 subjects had transtracheal catheters that allowed direct sampling of tracheal gas. We used oxygen concentrations of 47% and 97%, and flow rates between 1 L/min and 8 L/min. We also compared oxygen delivery via nasal cannula and transtracheal catheter. Effective F_{IO_2} was derived from plots of the fractional concentrations of carbon dioxide versus oxygen. RESULTS: We found excellent correlation between the effective F_{IO_2} values from tracheal and oral sampling ($r = 0.960, P < .001$). With 97% oxygen via nasal cannula, effective F_{IO_2} increased by 2.5% per liter of increased flow ($P < .001$); effective F_{IO_2} reached 32.7% at 5 L/min while P_{aO_2} increased by 12 mm Hg per liter of increased flow. In 4 subjects with a transtracheal catheter, effective F_{IO_2} increased 5.0% ($P < .001$) per liter of increased flow, and P_{aO_2} increased by 13 mm Hg per liter of increased flow, whereas in the same 4 subjects using nasal cannula for oxygen delivery, P_{aO_2} increased by only 6 mm Hg per liter of increased flow. CONCLUSIONS: Exhaled gas sampled at the mouth accurately reflected the effective F_{IO_2} in the trachea. In relation to inspired oxygen flow, the effective F_{IO_2} was lower than is conventionally thought. Compared to nasal cannula, transtracheal catheter approximately doubled the effective F_{IO_2} at a given flow rate. Accurate knowledge of F_{IO_2} should aid clinicians in managing patients with acute and chronic lung diseases. Key words: oxygen; transtracheal; inspired; oxygen concentration.

Introduction

The efficacy of oxygen therapy depends on the fraction of inspired oxygen (F_{IO_2}), which in turn depends on the method of oxygen supply and delivery. Unfortunately, when supplemental oxygen is given via a low-flow system such as nasal cannula, F_{IO_2} cannot be precisely determined because of entrainment of room air. This methodological study addresses the important need to better understand what F_{IO_2} can be achieved with different oxygen delivery systems. Perhaps the ideal method for determining F_{IO_2} would be to sample tracheal air, but this is not easily accomplished. However, we recruited a small group of patients with transtracheal oxygen catheter. We reversed the flow through the transtracheal catheter to sample tracheal gas while the patient received oxygen via nasal cannula. We used this method to validate a novel technique...
Effective Inspired Oxygen Concentration

whereby we used intra-breath, expired gas analysis to derive the effective F_{IO_2}.

Oxygen therapy via transtracheal catheter was first described by Heimlich in 1982. Subsequent publications showed that oxygen delivered via transtracheal catheter decreased the inspired minute volume and the oxygen cost of breathing, increased exercise tolerance, and reduced dyspnea. These findings led investigators to conclude that transtracheal delivery provides a higher oxygen concentration than nasal cannula, although F_{IO_2} was not specifically measured in any of those studies. Development of the transtracheal catheter introduced an alternative means of oxygen delivery and offers access for measurement of effective F_{IO_2}. Conventional estimates suggest that for every liter-per-minute increase in oxygen flow via nasal cannula, effective F_{IO_2} increases by approximately 4 percentage points (eg, supplemental oxygen at 1 L/min raises F_{IO_2} to approximately 24%, 2 L/min raises it to 28%, and up to 6 L/min raises it to 44%). We developed a novel and reliable clinical method of measuring effective F_{IO_2}, which could be used to assess the efficiency of oxygen supply and delivery systems. This approach has established, for the first time, parameters for accurately measuring effective F_{IO_2} in patients.

Methods

Patients

Ten subjects with chronic hypoxemia, including 4 with transtracheal catheter, were recruited into the study. There were 7 men and 3 women. Eight subjects had obstructive lung disease, one had restrictive lung disease, and one had obesity hypoventilation syndrome. The mean ± SD duration of lung disease was 10.7 ± 6.8 y, and the duration of oxygen therapy was 6.6 ± 2.8 y. The group’s mean prescribed oxygen flow rate was 2.9 ± 1.3 L/min (range 1.5–4.0 L/min), and the subjects used their oxygen for a mean 21.8 ± 6.6 h/d.

Written consent was obtained from all participants. The study protocol and informed-consent procedure were approved by the local institutional review board. The study was designed by author CBC and conducted at the University of California, Los Angeles. The oxygen-sieve technology was provided by Oxycare (Slough, England), which funded the research but was not involved in the data collection or analysis.

Study Protocol

Each subject came to the research laboratory once, for a period of about 4 hours. Two types of apparatus were used to supply oxygen, at predetermined constant flow rates. The output oxygen concentration of the oxygen concentrators was measured via mass spectrometry (MG1100, Perkin Elmer, Wellesley, Massachusetts). One of the oxygen concentrators was a conventional molecular sieve with 2 zeolite columns (492A, Puritan Bennett, Pleasanton, California). The output was tested multiple times, for periods up to 60 min and found to give a consistent output of 97% oxygen. The other oxygen concentrator was a membrane oxygen separator (Oxycare, Slough, England) that drives pressurized air through polymer straws that have different permeabilities to oxygen, nitrogen, and water vapor. The membrane separator gave a consistent oxygen concentration of 47% for at least 60 min.

We compared 2 oxygen-delivery devices: standard nasal cannula and transtracheal catheter. The subjects were seated comfortably at rest, avoiding distractions that might affect their breathing pattern. With all of the subjects, and on 3 occasions, we obtained baseline F_{IO_2} measurements while the subjects breathed room air.

The sequence of combinations of supply and delivery system was randomized with a random-number table. Each time the study conditions were changed, 15 min was allowed for the subject to reach equilibrium. The subjects received oxygen via nasal cannula, from the molecular sieve or from the membrane separator, at various flow rates. The molecular sieve was capable of oxygen flows up to 6 L/min, and we tested 1, 3, and 5 L/min. The membrane separator was capable of oxygen flows up to 10 L/min, and we tested 4, 6, and 8 L/min.

For sampling gas at the mouth we used a standard rubber mouthpiece with a sampling line to the mass spectrometer. With every combination of apparatus and flow rate, gas was continuously sampled, at 100 mL/min, during 10 successive breathing cycles. Gas from the transtracheal catheter was sampled and analyzed in the same manner. The mass spectrometer displayed and stored instantaneous fractional concentrations of carbon dioxide (F_{CO_2}) and oxygen (F_{O_2}). The analog signals were digitized and plotted as F_{CO_2} versus F_{O_2}, as described by Rahn and Fenn. For each condition of measurement, effective F_{IO_2} was obtained as the intercept of the $F_{CO_2}−F_{O_2}$ relationship with the x-axis, ie, when F_{CO_2} was 0%.

After a normal modified Allen test, each patient had an arterial line placed in a radial artery. Arterial blood gases were initially measured while the subject breathed room air, and then again toward the end of each set of measurements under different conditions of oxygen supply and delivery.

Statistical Analysis

Analyses were performed with statistics software (SPSS, SPSS, Chicago, Illinois). The subjects’ demographics and characteristics are expressed as mean ± SD. Measured values of F_{O_2}, F_{CO_2}, and P_{aO_2} were expressed and compared as mean ± SEM. The Pearson correlation coefficient was
derived to compare effective F_{IO_2} measured at the mouthpiece to that measured in the trachea. We used a mixed-effects model with unstructured covariance matrix to compare effective F_{IO_2} and P_{aO_2} with the different oxygen supply concentrations and delivery methods over the range of flow rates. P values < .05 were considered significant.

Results

Determination of Effective F_{IO_2}

The raw F_{O_2} and F_{CO_2} data were displayed breath-by-breath (Fig. 1A). We plotted F_{CO_2} against F_{O_2} for each of the measurement conditions (molecular sieve vs membrane separator, and nasal cannula vs transtracheal catheter), with the graphical approach first described by Rahn and Fenn. Figure 1B shows examples of data from a patient while breathing room air, and while receiving 47% oxygen from the molecular sieve at 4 L/min, 6 L/min, and 8 L/min.

Just as is recognized for breathing room air, the inspired point illustrated in Figure 2 represents the inspired gas concentrations from which effective F_{IO_2} can be determined. This phenomenon is true not only for room air, but also for various conditions of oxygen supply and delivery. Thus, by extrapolating the linear relationship between F_{CO_2} and F_{O_2} to the X axis we can derive the effective F_{IO_2}.

Measured Values of Effective F_{IO_2}

Table 1 shows the effective F_{IO_2} data. The baseline room-air F_{O_2} measurements were highly reproducible in all the subjects. The mean values ± SEM on the 3 occasions of measuring the F_{IO_2} on room were 20.8 ± 0.1%, 20.7 ± 0.1%, and 20.7 ± 0.1%, which is consistent with the expected room-air oxygen concentration.

At the highest studied flow (8 L/min) with the 47% oxygen via nasal cannula, the effective F_{IO_2} was 27.9 ± 0.6% at the mouthpiece and 28.2 ± 0.4% in the trachea.

During transtracheal catheter oxygen delivery, at all flow rates, the effective F_{IO_2} values were significantly higher than those via nasal cannula. With the 97% oxygen supply at 5 L/min, via nasal cannula, the effective F_{IO_2} was
With transtracheal catheter delivery and the 47% oxygen supply, at 8 L/min the effective FIO₂ was 32.0 ± 2.0%, compared to 45.2 ± 1.4% with the 47% oxygen supply at 5 L/min.

Regardless of the oxygen concentration and delivery system, transtracheal delivery consistently gave higher effective FIO₂, at all settings (P < .001).

Comparison of Effective FIO₂ Related to Apparatus and Flow Rate

Figure 4 shows the effective FIO₂ values, measured at the mouthpiece, plotted against the various flow rates. Transtracheal catheter always delivered higher effective FIO₂ than nasal cannula at equivalent flow rates (P < .001). We used a mixed effects model to study the change in effec-

Comparison of Effective FIO₂ With Oral Versus Tracheal Sampling

Figure 3 shows the measured oxygen concentrations at the mouthpiece versus in the trachea. The measurements correlate remarkably well overall (r = 0.960, P < .001), although the correlation is less robust at higher oxygen concentrations.

Table 1. Effective FIO₂*

<table>
<thead>
<tr>
<th>Delivery Method</th>
<th>Sampling Location</th>
<th>Room Air</th>
<th>97% O₂</th>
<th>47% O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>at 1 L/min</td>
<td>at 3 L/min</td>
<td>at 5 L/min</td>
</tr>
<tr>
<td>Nasal cannula</td>
<td>Mouthpiece</td>
<td>20.7 ± 0.1</td>
<td>22.8 ± 0.1</td>
<td>27.6 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>Trachea</td>
<td>20.7 ± 0.1</td>
<td>22.8 ± 0.1</td>
<td>27.6 ± 0.5</td>
</tr>
<tr>
<td>Transtracheal catheter</td>
<td>Mouthpiece</td>
<td>20.7 ± 0.1</td>
<td>25.0 ± 0.5†</td>
<td>34.9 ± 1.4†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mean ± SEM fraction of inspired oxygen (FIO₂) values for 10 consecutive breath cycles.
† P < .001 for transtracheal catheter versus nasal cannula, via mixed-effects model.

Fig. 3. Effective fraction of inspired oxygen (effective FIO₂) measured at the mouthpiece versus in the trachea. There was excellent correlation, based on 59 paired measurements (r = 0.960, P < .001).

Fig. 4. Effective fraction of inspired oxygen (effective FIO₂) versus oxygen flow rate with 2 different oxygen supply systems (membrane separator and molecular sieve) and 2 different oxygen delivery systems (nasal cannula and transtracheal catheter). Data are expressed as mean ± SEM.
Changes in P_aO_2 With Different Oxygen Supply and Delivery Systems

Figure 5A plots P_aO_2 versus oxygen flow rate for all the subjects, while they received oxygen via nasal cannula. With 97% oxygen via nasal cannula, P_aO_2 increased 12 mm Hg per liter increase in oxygen flow ($r^2 = 0.997; P < .001$). The P_aO_2 increases with 47% oxygen were, predictably, less. Figure 5B plots P_aO_2 versus oxygen flow rate in only the patients with transtracheal catheter, while they received oxygen only via nasal cannula, and while they received oxygen only via transtracheal catheter. With 97% oxygen via transtracheal catheter P_aO_2 increased 13 mm Hg per liter increase in oxygen flow ($r^2 = 0.993; P = .052$), whereas in the same 4 subjects with nasal cannula oxygen delivery, P_aO_2 increased by only 6 mm Hg per liter increased oxygen flow ($r^2 = 0.998$).

Discussion

We have described and validated a novel and simple method for deriving the effective FIO_2. With this method, sampling gas at the mouthpiece or in the trachea gave comparable effective FIO_2 values. In addition we have shown that the effective FIO_2 with supplemental oxygen via nasal cannula is lower than is conventionally thought, and that transtracheal delivery provides significantly higher effective FIO_2 than standard nasal cannula delivery, at equivalent flow rates.

Non-rebreather low-flow oxygen systems do not allow precise determination of FIO_2, because FIO_2 depends on the oxygen reservoir, the oxygen flow, and the patient’s ventilatory pattern. Several sources quote the expected FIO_2 increase to be 4% per liter-per-minute flow increase via nasal cannula. For example, one textbook calculated that, with nasal cannula, at 6 L/min (or 100 mL/s), the anatomical reservoir would provide 50 mL of 100% oxygen, the cannula would supply 100 mL of 100% oxygen, and the remaining 350 mL of a 500-mL tidal volume contains 70 mL of oxygen (at room air 20%), so:

$$FIO_2 = \frac{50 \text{ mL O}_2 + 100 \text{ mL O}_2 + 70 \text{ mL O}_2}{500 \text{ mL gas}} = 44\%$$

With a flow rate of 5 L/min the calculated FIO_2 is said to be 40%. By contrast, we found that 5 L/min of 97% oxygen via nasal cannula provided an FIO_2 of only $32.7 \pm 1.2\%$ (via sampling at the mouthpiece) or $31.8 \pm 0.5\%$ (via sampling in the trachea).

We have shown that providing an effective FIO_2 as high as 40% requires transtracheal delivery. For instance, our subjects had FIO_2 of $45.2 \pm 1.4\%$ with 5 L/min of 97% oxygen via transtracheal catheter. Figure 3 and Table 1
confirm that transtracheal oxygen provides consistently higher effective F_{IO_2} than can be achieved via nasal cannula.

Four of our patients had indwelling transtracheal catheters. Although this is a small subgroup, we took numerous samples of transtracheal and exhaled gas. We have shown rather convincingly that our method for determining effective F_{IO_2} applies just as well to both gas-sampling locations. Furthermore, exhaled gas accurately represents the tracheal F_{IO_2} with different oxygen supply concentrations and at various flow rates. To our knowledge, this is the first systematic validation that gas sampled at the mouthpiece accurately represents the tracheal concentration. In healthy subjects with a percutaneously placed tracheal sensing catheter, Gibson et al found the highest absolute inspired tracheal oxygen concentration to be 23.6% at 3 L/min, and 25.4% at 5 L/min, with nasal cannula. In another report, in patients with permanent tracheostomies the tracheal oxygen concentration was 25% at 3 L/min. Our findings concur reasonably well with those data, but contrast with a published formula that would predict the F_{IO_2} to be 32% at 3 L/min and 40% at 5 L/min.

We further evaluated the efficacy of the different oxygen supply and delivery systems in this study with arterial blood gas analysis. For the group as a whole, the 97% oxygen via nasal cannula increased P_{aO_2} 12 mm Hg per liter increase in oxygen flow. This finding should be a useful guide for prescribing oxygen therapy, since it allows an estimate of the achievable P_{aO_2} for a given oxygen prescription. However, this estimate is only a generalization, and the actual therapeutic response should be separately validated in each individual patient. With 97% oxygen, transtracheal catheter delivery increased P_{aO_2} by 13 mm Hg per liter increase in oxygen flow. Note, however, that the transtracheal catheter-patients had more severe baseline hypoxemia (P_{aO_2}, 42 mm Hg while breathing room air, compared to 53 mm Hg for the whole group). Also, their observed increase in P_{aO_2} in response to nasal cannula oxygen delivery was only 6 mm Hg per liter of increased oxygen flow. Overall, transtracheal catheter gave higher effective F_{IO_2} and P_{aO_2} than nasal cannula, regardless of the supplied oxygen concentration. These findings illustrate the advantages of transtracheal oxygen, particularly for patients with refractory hypoxemia.

The transtracheal catheter was developed in the early 1980s, as an alternative to nasal cannula oxygen. More recent surgical techniques have simplified the procedure. Many benefits of transtracheal catheter oxygen have been described. For example, in patients with refractory hypoxemia, transtracheal oxygen reduces bulk oxygen use by 29.4% and decreases the oxygen flow requirement by 47–58% at rest and by 30% during exercise. These oxygen savings should extend the use of portable oxygen devices by ambulatory patients, and thereby facilitate greater independence. In addition, patients on transtracheal catheter oxygen have improved oxygenation from the reduced oxygen cost of breathing because of the reduced inspired minute volume and inspiratory work of breathing, which may reduce the energy expenditure from breathing. Other published benefits include reduced hematocrit, increased exercise tolerance, and improved arterial oxygenation during sleep. Transtracheal oxygen has even been suggested as an alternative to other therapies for patients with refractory obstructive sleep apnea.

Our study implies that these benefits derive from the substantially higher effective F_{IO_2} values with transtracheal oxygen, compared to nasal cannula.

Limitations

First, we studied patients with severe lung disease, so our results may not be generalizable to other populations. Also, the group with transtracheal catheter had more severe disease than the group as a whole. For example, the mean P_{aO_2} while breathing room air was 42 ± 4 mm Hg in the transtracheal catheter subjects, compared to 54 ± 11 mm Hg in the whole group. However, our main purpose was to test the reliability of our method for determining effective F_{IO_2}, not to compare the 2 subject subgroups.

Second, we did not measure respiratory rate or tidal volume, and these could certainly influence room-air entrainment in patients using low-flow oxygen systems. Nevertheless, every derivation of effective F_{IO_2} was made over 10 breath cycles (ie, at least 30 s), and we would expect that sampling interval to limit the variability of the measurements related to alterations in breathing pattern.

Third, we studied only 10 subjects, but we believe our data are more robust than might be suggested by that small number, because the 4 patients with transtracheal catheter provided 59 paired comparisons of effective F_{IO_2} measured at the mouthpiece and in the trachea, and the correlation we report (see Fig. 3) is based on those data.

This is a small methodological study that builds on classic work, such as the study by Mithoefer et al, who set out to predict the P_{aO_2} response to supplemental oxygen from basic principles, and the study by Bengtsson et al, who used end-tidal oxygen tension as an estimate of alveolar oxygen tension. We believe our approach has practical advantages over those other methods, in that we actually derive the effective F_{IO_2}.

The fact that transtracheal oxygen therapy is not widely used at present might limit interest in our findings. On the other hand, this clear demonstration of the superiority of transtracheal delivery might revive interest in this interesting therapeutic technique.
Conclusions

We have validated a novel technique for determining effective F_{IO_2} under different conditions of oxygen supply and delivery. We used intra-breath analysis of expired gas concentrations, which are not influenced by variations in breathing pattern. The derived F_{IO_2} values at various oxygen flow rates via nasal cannula showed that F_{IO_2} is substantially less than has been suggested in textbooks and journals. We also investigated a developing technology for oxygen supply, the membrane separator, which might someday provide an alternative to the molecular sieve for concentrating oxygen from room air. We confirmed that transtracheal oxygen delivery is substantially more efficient than nasal cannula delivery, and transtracheal delivery approximately halves the oxygen flow requirement to achieve a given F_{IO_2}. Our findings pave the way for further investigation of effective F_{IO_2} under other conditions, such as exercise or sleep.

ACKNOWLEDGMENTS

We are grateful to W John Boscardin PhD, Department of Biostatistics, University of California, San Francisco, for his guidance with the statistical analysis.

REFERENCES