AARC Clinical Practice Guideline

Bland Aerosol Administration—2003 Revision & Update

BAA 1.0 PROCEDURE:
Bland aerosol administration

BAA 2.0 DESCRIPTION/DEFINITION:
For purposes of this guideline, bland aerosol administration includes the delivery of sterile water or hypotonic, isotonic, or hypertonic saline in aerosol form. Bland aerosol administration may or may not be accompanied by oxygen administration.

2.1 The use of cool, bland aerosol therapy is primarily indicated for upper airway administration; therefore, a mass median aerodynamic diameter (MMAD) ≥ 5 micron is desirable.

2.2 The use of hypo- and hypertonic saline is primarily indicated for inducing sputum specimens; therefore, a MMAD of 1-5 microns is desirable.

2.3 The use of heated bland aerosol is indicated primarily for minimizing humidity deficit when the upper airway has been bypassed; therefore, a MMAD of 2-10 microns is desirable.

BAA 3.0 SETTINGS:
Bland aerosol therapy can be administered in settings that include hospital, clinic, extended care facility, and home.

BAA 4.0 INDICATIONS:
4.1 The presence of upper airway edema—cool bland aerosol

4.1.1 Laryngotraechoebronchitis (LTB)

4.1.2 Subglottic edema

4.1.3 Post-extubation edema

4.1.4 Postoperative management of the upper airway

4.2 The presence of a bypassed upper airway

4.3 The need for sputum specimens or mobilization of secretions

BAA 5.0 CONTRAINDICATIONS:
5.1 Bronchoconstriction

BAA 6.0 HAZARDS/COMPLICATIONS:
6.1 Wheezing or bronchospasm

6.2 Bronchoconstriction when artificial airway is employed

6.3 Infection

6.4 Overhydration

6.5 Patient discomfort

6.6 Caregiver exposure to droplet nuclei of Mycobacterium tuberculosis or other airborne contagious microorganism produced as a consequence of coughing, particularly during sputum induction

6.7 Edema of the airway wall

6.8 Edema associated with decreased compliance and gas exchange and with increased airway resistance

6.9 Sputum induction by hypertonic saline inhalation can cause bronchoconstriction with patients who have COPD, asthma, cystic fibrosis, or other pulmonary diseases.

BAA 7.0 LIMITATIONS OF METHOD:
7.1 The efficacy of intermittent or continuous use of bland aerosol as a means of reducing mucus has not been established. Bland aerosol is not a substitute for systemic hydration.

7.2 The physical properties of mucus are only minimally affected by the addition of water aerosol.

7.3 Bland aerosol for humidification when the upper airway has been bypassed is not as efficient or effective as are heated water humidifiers or adequately designed heat moisture exchangers (HME) because of the

7.3.1 Difficulties in maintaining temperature at patient airway

7.3.2 Possible irritation to the airway

7.3.3 Infection risk
BAA 8.0 ASSESSMENT OF NEED:

8.1 The presence of one or more of the following may be an indication for administration of sterile water or isotonic or hypotonic saline aerosol:

8.1.1 Stridor
8.1.2 Brassy, croup-like cough
8.1.3 Hoarseness following extubation
8.1.4 Diagnosis of LTB or croup
8.1.5 Clinical history suggesting upper airway irritation and increased work of breathing (e.g., smoke inhalation)
8.1.6 Patient discomfort associated with airway instrumentation or insult
8.1.7 Bypassed upper airway

8.2 The presence of the need for sputum induction (e.g., for diagnosis of Pneumocystis carinii pneumonia,17–19 tuberculosis) is an indication for administration of hypertonic saline aerosol.

BAA 9.0 ASSESSMENT OF OUTCOME:

9.1 With administration of sterile water or hypotonic or isotonic saline, the desired outcome is the presence of one or more of the following:

9.1.1 Decreased work of breathing
9.1.2 Improved vital signs
9.1.3 Decreased stridor
9.1.4 Decreased dyspnea
9.1.5 Improved arterial blood gas values
9.1.6 Improved oxygen saturation as indicated by pulse oximetry (SpO₂)

9.2 With administration of hypertonic saline, the desired outcome is a sputum sample adequate for analysis.

BAA 10.0 RESOURCES:

10.1 Equipment—Depending upon the specific application, components may include:

10.1.1 Aerosol generator
10.1.1.1 Large-volume nebulizer
10.1.1.2 Ultrasonic nebulizer
10.1.1.3 Small-volume nebulizer
10.1.2 Heater or cooling device
10.1.3 Patient application device
10.1.3.1 Mist tent
10.1.3.2 Hood
10.1.3.3 Mouthpiece
10.1.3.4 Mask
10.1.3.5 T-piece
10.1.3.6 Face tent

10.1.3.7 Tracheostomy collar
10.1.4 Corrugated aerosol tubing and water trap
10.1.5 Tissues and emesis basin or container for collecting or disposing of expectorated sputum
10.1.6 Gloves, goggles, gown, and mask
10.1.7 Suction device and catheters
10.1.8 Oxygen analyzer
10.1.9 Device for filtering exhaled gas during sputum induction, with scavenger or filter system
10.1.10 Thermometer

10.2 Resources—Personnel

10.2.1 Level I caregiver may be the provider of service after Level II personnel have established need for a specific device by patient assessment and the first administration has been completed. Level I personnel must demonstrate:

10.2.1.1 Proper preparation, measurement, and mixing of solution
10.2.1.2 Proper technique for administration of solution to be aerosolized
10.2.1.3 Proper use of equipment
10.2.1.4 Effective cleaning of equipment
10.2.1.5 Appropriate disposal of wastes
10.2.1.6 Ability to encourage effective breathing patterns and coughing techniques
10.2.1.7 Ability to modify techniques in response to adverse reactions as instructed and to appropriately communicate with physician, detailing the severity of symptoms
10.2.1.8 Compliance with Standard Precautions and proper infection control procedures

10.2.2 Level II personnel supervise Level I personnel, are responsible for initial assessments and care of the unstable patient, and must demonstrate knowledge and skill related to:

10.2.2.1 Indications and limitations for aerosol devices and associated equipment
10.2.2.2 Proper use, maintenance, and cleaning of equipment, including filter and scavenging systems
10.2.2.3 Risks inherent to the
aerosolized solution and specific devices
10.2.2.4 Procedures for safely disposing of hazardous wastes
10.2.2.5 Breathing patterns and coughing techniques
10.2.2.6 Modification of technique in response to adverse reactions
10.2.2.7 Modification of flowrates and temperature as prescribed, in response to severity of symptoms
10.2.2.8 Assessment of patient condition and response to therapy
10.2.2.9 Auscultation, inspection, and monitoring of vital signs
10.2.2.10 Determination of peak expiratory flowrate, spirometry, and ventilatory mechanics
10.2.2.11 Recognition and response to adverse reactions and complications of procedure
10.2.2.12 Understanding of and compliance with Standard Precautions
10.2.2.13 Proper disposition of medical waste

BAA 11.0 MONITORING:
The extent of patient monitoring should be determined on the basis of the stability and severity of the patient’s condition.
11.1 Patient subjective response—pain, discomfort, dyspnea, restlessness
11.2 Heart rate and rhythm, blood pressure
11.3 Respiratory rate, pattern, mechanics, accessory muscle use
11.4 Sputum production: quantity, color, consistency
11.5 Skin color
11.6 Breath sounds
11.7 Pulse oximetry
11.8 Spirometry equipment (if concern of adverse reaction)

BAA 12.0 FREQUENCY:
12.1 Critical care or emergency room settings that require continuous administration of bland aerosol necessitate close monitoring.
12.1.1 Short duration: 4-8 hours following extubation
12.1.2 Subglottic edema: until clinical evidence of edema has subsided
12.1.3 Long duration: artificial airways
12.1.4 Re-evaluation every 8 hours or with change in clinical condition
12.2 Acute care patients should be evaluated for response to therapy of continuous administration of bland cool aerosol for LTB and re-evaluated at least every 48-72 hours or with change in clinical response.
12.3 Home care patients should be re-evaluated periodically for response to therapy or with change in status.
12.4 Sputum induction should be performed as often as necessary to yield appropriate specimen for desired examination (eg, each morning for 3 days for acid-fast bacillus).

BAA 13.0 INFECTION CONTROL:
13.1 Standard Precautions for body fluid isolation are to be implemented.
13.2 Centers for Disease Control and Prevention recommendations for control of exposure to tuberculosis and droplet nuclei are to be implemented when patient is known or suspected to be immunosuppressed, is known to have tuberculosis, or has other risk factors for the disease.
13.2.1 To reduce aerosol contamination of room air
13.2.1.1 Enclose and contain aerosol administration.
13.2.1.2 Filter aerosols that bypass or are exhaled by patient.
13.2.1.3 When aerosol release to the atmosphere cannot be routed through a filter:
13.2.1.3.1 Use filtered scavenger systems to remove aerosols that cannot be contained.
13.2.1.3.2 Provide local exhaust ventilation to remove aerosols that are released into room air.
13.2.1.3.3 Provide frequent air exchange to dilute concentration of aerosol in room.
13.2.1.3.4 Allow exchange of gas in the room to eliminate 99% of aerosol before next patient enters or receives treatment in that area.
13.2.1.3.5 Provide booths or stalls
for sputum induction in areas in which multiple patients are treated. Booths or stalls should be designed to provide adequate airflow to draw aerosol and droplet nuclei from the patient and into an appropriate filtration system with exhaust directed to an appropriate outside vent. Booths should be adequately cleaned between patients.

13.2.2 Filters, nebulizers, and other contaminated disposable components of the aerosol delivery system should be treated as hazardous waste.

13.2.3 Personal protection devices should be used to reduce exposure when engineering alternatives are not adequate or in place.21

13.2.3.1 Use properly fitted respirator with adequate filtration when flow exhaust cannot control removal of aerosols.

13.2.3.2 Goggles, gloves, masks, and gowns should be used to serve as splatter shields and to reduce exposure to body substances.

13.2.4 Personnel should safely dispose of hazardous wastes.

13.2.5 Personnel who are at high risk for adverse effects from exposure should be given alternative assignments.

13.3 Nebulizers should not be reused between patients without disinfection.

13.4 Nebulizers should be sterilized, changed, or cleaned according to institutional infection control policy or at conclusion of a procedure that is not to be repeated.22,23

13.5 Solutions should be handled aseptically.

13.6 Solutions from multidose sources must be handled aseptically and discarded after 24 hours.

Revised by Thomas J Kallstrom RRT, FAARC, Fairview Hospital, Cleveland, Ohio, and approved by the 2003 CPG Steering Committee

Original Publication: Respir Care 1993;38(11):1196-1200.

REFERENCES

5. Rosenbluth M, Chernick V. Influence of mist tent therapy on sputum viscosity and water content in cystic fibrosis, Arch Dis Child 1974;49(8):606-610.
18. Glenny RW, Pierson DJ. Cost reduction in diagnosing


Interested persons may photocopy these Guidelines for noncommercial purposes of scientific or educational advancement. Please credit AARC and RESPIRATORY CARE Journal.

All of the AARC CPGs may be downloaded at no charge from http://www.rcjournal.com/online/