Overview of Respiratory Care Research

Robert L Chatburn RRT FAARC

Introduction
To Heal: Research and Patient Care
Health Care Administration
Evaluating New Equipment and Procedures
Ethics and Research
The Institutional Review Board
To Teach: Research and Education
To Discover: The Scientific Method
Formulate a Problem Statement
Generate a Hypothesis
Define Rejection Criteria
Make a Prediction
Perform the Experiment
Test the Hypothesis
Steps in Conducting Scientific Research
Develop the Study Idea
Search the Literature
Consult an Expert
Design the Experiment
Write the Protocol
Obtain Permission
Collect the Data
Analyze the Data
Publish the Findings
Basic Skills Needed by Researchers

Few health care workers are directly involved in conducting research, but all must be able to read and understand scientific reports in medical journals. They must be familiar with the basic concepts of research in order to practice as professionals. The most important skill is the ability to read and critically evaluate published reports. Health care administrators rely on the results of studies to help solve problems and make decisions about important subjects, such as cost containment, productivity assessment, and continuous quality improvement. Educators must stay current with new technology and its evidence base. Both administrators and educators must be familiar with basic research concepts in order to be informed consumers of research information. Research attempts to find answers using the scientific method. This report describes the steps in the scientific method, the overall plan for conducting scientific research, and some basic skills required to successfully conduct research. Key words: research, respiratory care, publications, study protocol, institutional review board, writing, research methodology, scientific method. [Respir Care 2004;49(10):1149–1156. © 2004 Daedalus Enterprises]
Overview of Respiratory Care Research

Introduction

The chances that you, the reader, will become a famous researcher may be slim. About 120,000 people are practicing respiratory therapy in the United States, and about 34,000 of those are members of the American Association for Respiratory Care, but only about 500 of those were involved with presenting research at the 49th International Respiratory Congress in 2003. But every one of those 120,000 respiratory therapists needs to know how to read and understand scientific reports in medical journals. The same holds true for all health care workers. Even if you never conduct a study, you must be familiar with the basic concepts of research in order to practice as a professional whose understanding grows from continuing education.

The 2 purposes of the special articles in this issue of Respiratory Care are to help you become an educated consumer of medical research and to outline a course of self-study if you want to perform research. If you do want to perform research, the best thing you can do is find a mentor—someone who has experience conducting scientific studies and publishing the results. A mentor can help you turn the ideas in these articles into practical realities.1

Academic medicine has 3 basic missions: to heal, to teach, and to discover. Scientific research is the thread running through these 3 basic activities that gives them coherence and meaning.

To Heal: Research and Patient Care

Health care professionals must acquire the knowledge and skills needed to assess the usefulness of new equipment, the effectiveness of patient care, and the adequacy of available teaching materials. The most important of these skills is the ability to read and critically evaluate published reports. Without that skill no meaningful evaluation of current practices can be made and no research can be planned.

Growing numbers of clinicians, educators, and administrators are conducting their own investigations and critically examining research done by others. Health care workers are usually involved with the application of research results in the clinical setting. Within the research continuum, however, there are almost infinite opportunities to get involved in seeking the answers to questions relating to the practice of health care.

Health Care Administration

Health care department managers and hospital administrators alike rely on the results of studies to help solve problems and make decisions about important subjects, such as cost containment, productivity assessment, and continuous quality improvement. Evaluating the quality of departmental programs and services is difficult. The Joint Commission on Accreditation of Health Care Organizations demands that health care providers monitor quality scientifically. The Commission defines quality assurance as “a manner of demonstrating consistent endeavor to deliver optimal patient care with available resources and consistent with achievable goals. The correction of deficiencies is inherent to the process.” This correction process is accomplished through the careful and rigid manipulation of variables and the measurement of effects; in other words, using the scientific method. Only in this way can the physician, patient, patient’s family, hospital, and government administrator be assured of the quality and cost-effectiveness of health care services.

Evaluating New Equipment and Procedures

To meet the changing needs of health care, medical equipment manufacturers introduce to the market new diagnostic and support instruments. Because of the relatively short product life cycle in the market of technical equipment, new products are introduced frequently. But new does not necessarily mean better. At times the development of new technology outpaces the need for that technology, and when that happens, product marketers have not done their job in accurately assessing demand. Medical professionals must then take the lead in assuring that they are not trying to invent ways to use new equipment. Rather, new equipment should satisfy a well-established need. Although manufacturers often engage in extensive testing and market research, the final burden of proof as to a product’s ultimate function and benefit falls to the end users—our patients and us.

Ethics and Research

In the health care industry today we are confronted with a multitude of laws, regulatory constraints, and standards that govern the conduct of the industry and the individuals who work in it. Conducting health care research demands attention to a special set of regulatory and ethical considerations.
Research involving human subjects invokes legal, ethical, and sociologic concerns related to the safety and protection of the subject’s human rights. Research involving animals requires attention to several important concerns as well. Regardless of the type of study subjects, those engaged in medical research must be reminded that the importance of their work should never overshadow but, rather, complement society’s health care goals. Procedures must strictly adhere to legal guidelines so that subjects are not exploited. Innovative and controversial research must be ethically conducted and honestly reported. The American Association for Respiratory Care has a code of ethics (Table 1) that all therapists must follow, whether they are involved in research or not.²

The Institutional Review Board

When human beings participate in scientific research, the researchers must take great care to ensure that the participants’ rights are protected. Institutional review boards (IRBs) consider proposed studies from various perspectives to ensure that no study violates patient rights. The researcher cannot begin an investigation involving human subjects without formal approval from the IRB. An IRB (also known as “institutional review committee,” “human subjects review committee,” “human investigation committee,” or “research surveillance committee”) is any committee, board, or other group formally designated by an institution to review proposals for biomedical research involving human or animal subjects. An IRB usually includes administration, staff, and legal representatives from the institution and the surrounding community, who ensure that proposed research is reviewed not only in terms of scientific standards but in terms of community acceptance, relevant law, professional standards, and institutional regulations. The IRB meets regularly to review and approve, request revisions to, or reject study proposals.

The IRB’s main functions are to protect the rights, well-being, and privacy of individuals and to protect the interests of the institution. IRB procedures differ among institutions, so researchers must review the guidelines applicable in their own institutions.

Consideration of risks, potential benefits, and informed consent typically occupies the majority of the IRB’s time. Before an IRB can approve a research protocol, the following conditions must be met:

1. The risks to the research subject are so outweighed by the potential benefits to the subject, and the importance of the knowledge to be gained, as to warrant a decision to allow the subject to accept those risks.
2. Legally effective informed consent will be obtained by adequate and appropriate methods.
3. The rights and welfare of all subjects will be adequately protected.

The IRB may ask the investigator to modify the original research plan to comply with Food and Drug Administration and Department of Health and Human Services regulations as well as ethical norms. However, the IRB is not a police force. There is a presumption of trust that the approved research protocol will indeed be consistently followed.

An IRB application typically includes the components listed in Table 2. First, a formal research protocol must be established. This description of the study’s intended purpose and procedures is then followed by information about the intended subjects, including the sources of potential subjects, the anticipated number of subjects required, a description of the consent procedures, and a description of potential risks and benefits to both the subjects and society.

An integral part of the study protocol, and a necessary component for IRB review, is the patient or subject consent form. Indeed, most IRB comments about proposals concern the wording of the consent form. Informed consent is the voluntary permission given by a person, allowing that person to be included in a research study after being informed of the study’s purpose, treatment methods, risks, and benefits.
To Teach: Research and Education

Medical colleges are responsible for graduating practitioners who are knowledgeable and current in the practice of their profession. Educators must stay up to date with new ideas and technology that affect the diagnosis and treatment of disease. Before a particular piece of equipment or treatment modality is accepted for introduction to the student, the instructor must first discern whether the claims about its benefits rest on a solid scientific foundation. Keeping abreast of new product developments requires that instructors read and critically evaluate reports and tests of function and reliability. A critical reading of scientific journals provides the basis for their decisions concerning classroom demonstrations, guides, and the planning process. Educators may wish to conduct their own investigations as well.

In order that health care practitioners keep informed of recent developments in cardiopulmonary medicine, hospital department managers must establish and maintain continuing education programs. These in-service programs explore and provide a forum for new trends, ideas, and developments as research is completed in various subjects. Allied health professionals are taking an increasing role in these in-service programs. These in-service programs explore and provide a forum for new trends, ideas, and developments. Continuing with our example, we might hypothesize that the coin is a penny.

To Discover: The Scientific Method

Research attempts to find answers using the scientific method. Science is simply “organized curiosity.” The scientific method is the organizational structure by which we formulate questions and answers during experiments. The key purpose of this organizational structure is to allow experiments to be repeated and thus validated or refuted.

In this way we develop confidence in our findings. Contrary to popular belief, science does not attempt to prove anything. You can never prove the truth of an assumption, simply because you can never test all the factors that could possibly affect it. Scientific theories are never “true” in an absolute sense: they are simply useful to various degrees and their life spans are inversely proportional to the amount of research done on them.

The scientific method is a series of steps that lead from question to answer, and then usually to more questions. Figure 1 illustrates the scientific method in the form of an algorithm.

Formulate a Problem Statement

Research projects usually start out as a vague perception of some problem or question. The first step is to refine this vague notion into a concise statement or question, usually only 1 or 2 sentences in length. Think in terms of (a) what you see happening and (b) why it is important. For example, if you find a coin lying on the ground your problem statement might be “I need to identify this coin so I can decide whether to pick it up.”

Generate a Hypothesis

The hypothesis is a short statement that describes your supposition about a specific aspect of the research problem. The hypothesis is what you test with an experiment. Nobody knows where hypotheses come from: forming one is a creative act. All you can do is prepare yourself by thoroughly studying all aspects of the problem so your mind becomes a fertile ground for hypotheses to grow.

Continuing with our example, we might hypothesize that the coin is a penny.

Define Rejection Criteria

The purpose of the experiment is to provide data, which you will use to either reject the hypothesis as false or accept it for the time being as a useful (but tentative) assumption. The fact that we can never absolutely prove the truth of a hypothesis leads us to focus on trying to prove it false. We prove a hypothesis is false by comparing the experimental data to a set of criteria we have established before the experiment began. If the experimental data do not meet the criteria, we reject the hypothesis (hence the term “rejection criteria”).
To define the rejection criteria we need to specify what we should measure in the experiment. For example, we could measure the coin’s diameter and color.

Make a Prediction

Next we make a prediction based on our hypothesis that specifies the rejection values. For example, we could say, “If the coin is a penny, it will have a diameter of 1.9 cm and a copper color.” The rejection criteria are thus: diameter = 1.9 cm and color = copper.

Perform the Experiment

The rejection criteria determine the measurements required in the experiment. Much of experimental design is based on statistical theory that is beyond the scope of this article, but the basic idea is to determine (a) what variables to measure, (b) how the measurements should be made, and (c) what experimental units (subjects) will be used for making measurements. In our simple example we have only one experimental unit (the coin) and we need only a ruler and our eyes for making the measurements.

Test the Hypothesis

It is the hypothesis, not the experimental subject, that is being tested (despite that we say things like “The patient was tested for cystic fibrosis.”). The hypothesis is tested by comparing the experimental data to the rejection criteria. In practice, this comparison is done mathematically, using a statistical procedure appropriate for the specific type of measurement data and hypothesis. If the data contradict the prediction we made, then the hypothesis is rejected. We then go back and make another hypothesis and another prediction based on the rejection criteria (we may even choose new criteria). If the data agree with the prediction, the hypothesis is accepted as possibly true, with the understanding that data collected in the future may prove it false. For example, suppose the diameter of the coin is 2.1 cm and it is silver. Obviously, we would reject the hypothesis that it was a penny. We would then create a new hypothesis (perhaps that the coin was a dime) and a new prediction (based on the diameter and color of a dime).

But suppose the diameter is indeed 1.9 cm and the color is copper. Does that prove it is definitely a penny? What if there is a foreign coin that has those characteristics? There is no way to discriminate between the foreign coin and a penny based on our simple rejection criteria. So we simply acknowledge that we may be wrong, but until we have further information we will suppose the coin is a penny. This example shows that we can do everything right in terms of following the scientific method and still end up with a wrong conclusion. It also shows how critical it is to select the right rejection criteria and make accurate measurements. You can now appreciate how science usually produces more questions than it answers.

Steps in Conducting Scientific Research

I will now expand on the scientific method to give an overview of the entire process of conducting a research project.
Develop the Study Idea

The first step is to develop your ideas about the study problem and the specific hypotheses. Ideas come from everyday work experiences, talking with colleagues, and reading professional journals. You must also consider the experiment’s feasibility. A great project that you do not have the resources to finish is a waste of time.

Search the Literature

An important step in the research process is a thorough search of the literature. By the literature search you determine what is already known about your subject and learn about methods you might use for experiments.

Consult an Expert

Before you begin writing the plan for your project, discuss your ideas with someone who has experience with research and statistics. Advice at this point can help you refine the study question, identify appropriate experimental methods, and develop an implementation plan.

Design the Experiment

Three basic study designs are commonly used in respiratory care: the case study, the device or method evaluation, and the original clinical study.

The case study describes a particular patient care episode that has exceptional teaching value. There is usually no need for statistical analysis in a case study, so the case study is a good choice for the novice researcher.

A device or method evaluation has at least some descriptive statistics and may involve hypothesis testing to determine the efficacy of a treatment or compare the performance of a new device/method that of an older device/method. Device/method evaluations are more complicated than case studies, but they are very popular among new researchers, because they usually do not involve the complications and expense of studies that involve patients.

A clinical study is the most advanced type of study; it involves obtaining IRB permission, sophisticated statistical procedures, medical equipment, patient care, and various other complications. Clinical practice is based on this type of research. You should not attempt this type of research until you have some experience and a good mentor.

Write the Protocol

A brief but detailed research protocol serves as a set of instructions for investigators. It also serves to communicate your plans to others, such as those from whom you must obtain cooperation or permission to conduct the study.

Obtain Permission

Before conducting a study you need permission from your immediate supervisor and from any others who will be affected (e.g., physicians, nurses, staff, lab personnel). If the study involves human or animal subjects, the research protocol will have to be approved by the IRB. If your study involves medical treatment of patients (or even animals), you will probably have to get a physician to act as principal investigator to obtain the IRB’s permission. In addition, such studies require written consent from the study subjects or their guardians. The decision to participate in a study must be voluntary and the subject must be allowed to withdraw at any time without penalty.

Collect the Data

The best-laid plans often fall apart during implementation. Often data collection requires more time than originally anticipated. Often the protocol must be revised as problems occur. When planning for the study, make sure you consider how data will be collected, what forms will be used to record the data, and who will be responsible for the data.

Analyze the Data

Once the data collection phase is completed, the data are summarized in tables and graphs, using basic descriptive statistics. The study design may require formal statistical procedures to test the hypothesis. Finally, you must interpret the findings and form your conclusions.

Publish the Findings

There is no point in doing all the work of a study if you do not communicate your findings to your colleagues, and you cannot effectively communicate them unless you write a report. And, since you are going to write them anyway, you might as well use a style recommended by one of the medical journals. The report can be as simple as a 1-page abstract for presentation at a national meeting, or as comprehensive as an original research article. If it is published, it will be preserved as part of medical history in copies of the journal worldwide.

Basic Skills Needed by Researchers

Although the respiratory care programs in some colleges give introductory classes in research, most of the researchers I have met in the last 20 years have been self-taught. With that in mind I would like to offer a brief outline for self-study. Such a course of study has 3 main components: familiarity with measurement devices, computer skills, and statistics knowledge.
Fortunately, your training as a respiratory therapist has already provided you with strong measurement skills. Most studies you might be involved with rely on measurements of familiar variables such as pressure, volume, flow, and gas concentration. One thing you may need to learn about is the concept of measurement error and how it can be minimized through proper calibration procedures.

It is hard to imagine anyone actually getting through the publication stage of research without having used a computer. These days, typing skills are assumed (ie, if you don’t know how to type, learn now). You also need to know how to use word processing software (eg, Microsoft Word) and you must be proficient at basic technical writing. There are many books in the library that give basic information about how to be a good writer,3–5 but I believe the best way to learn is by working closely with a mentor who has published scientific reports. Keep in mind the cardinal rule of working with a mentor: Put your ego on the shelf. You must be able to accept critical review of your written words, not only in the preparatory stages but also during professional peer review by the editorial board of a medical journal.

Another key idea in writing (that is seldom mentioned in textbooks) is the necessity of maintaining a logical continuity among the major sections of your report. These sections usually include the introduction, methods, results, discussion, and conclusion. The hypothesis must be described in the introduction because the hypothesis is the unifying principle for the rest of the report. The hypothesis suggests the measurements required for the study, which are described in the methods section. All measurements described in the methods section must be represented by summary data in the results section. The data in the results section provide the basis for the discussion and conclusions, which must refer back to the initial hypothesis in the introduction. Manuscripts from novice researchers often fail peer review because they broke that logical chain.

In addition to the ability to use word processing software, I have found it very useful to be familiar with spreadsheet software (eg, Microsoft Excel). Spreadsheets are very useful for designing data-collection forms and for organizing the data. Spreadsheets can also be used to calculate basic (and even advanced) statistics and to produce tables and graphs. Somebody has to do this and it is much quicker and less expensive if you do it yourself. If you do a lot of research, you will want to use specialized statistical software for data analysis. Such programs are very user-friendly and often have “wizards” that help you decide on the appropriate procedures to use with your data.

If you are going to be a scientist, you can’t get around the need for at least a basic knowledge of statistics. Such knowledge is required, if only to communicate with a statistical advisor. Statistics is a broad and often very complicated field, but the concepts and procedures you will need for most respiratory care research are not that difficult. Table 3 shows the most important concepts. There are only a handful of statistical procedures that are common in respiratory care research (Table 4). They are most conveniently grouped by the level of measurement represented by the study data. The levels of measurement are nominal (eg, male/female, lived/died), ordinal (eg, a pain scale or an Apgar score), and continuous (eg, pressure, temperature, flow, duration). Another key concept in distinguishing statistical procedures is that of matching. Matched data

| Table 3. Basic Statistical Concepts Important for Doing Respiratory Care Research |
| Variables (quantitative versus qualitative) |
| Central tendency (mean, median, mode) |
| Data variability (range, standard deviation) |
| Measurement error, calibration procedures |
| Sources of study bias |
| Population versus sample |
| Parameter versus statistic |
| Matched versus unmatched data |
| Descriptive versus inferential statistical procedures |
| Levels of measurement |
| Nominal |
| Ordinal |
| Continuous |

| Table 4. Basic Statistical Procedures Common in Respiratory Care Research |
| Descriptive Statistics |
| Tables |
| Graphs |
| Percentages |
| Sensitivity and specificity |
| Mean, median, range, and standard deviation |
| Inferential Statistics (Hypothesis Testing) |
| Procedures for Nominal Data |
| Fisher’s exact test (2 groups, 2 outcomes) |
| chi-square test (several groups and several outcomes, unmatched data) |
| McNemar test (several groups and several outcomes, matched data) |
| Procedures for Ordinal Data (testing for differences between 2 groups of data) |
| Mann-Whitney rank sum test (unmatched data) |
| Wilcoxon signed rank test (matched data) |
| Procedures for Continuous Data |
| Pearson correlation coefficient (for testing the strength of the association between 2 variables) |
| Linear regression (for predicting the value of one variable based on the value of one or more other measured variables) |
| t test (testing for differences between the mean values of 2 groups of data) |
| Analysis of variance (ANOVA) (testing for differences among the mean values of several groups of data) |
are closely related in some way, such as measurements on twins, very similar subjects, or repeated measurements on the same subject. Unmatched data are measurements from unrelated subjects.

The American Association for Respiratory Care offers a 300-page, college-level textbook titled *Handbook for Respiratory Care Research,* which is a valuable resource for those interested in studying the concepts I have mentioned in this article and many of the concepts mentioned in the other articles in this issue of Respiratory Care. American Association for Respiratory Care members can download the book (in PDF format) for free at the Resources page at (http://www.aarc.org).

REFERENCES

1. Chatburn RL. Advancing beyond the average: the importance of mentoring in professional achievement. Respir Care 2004;49;(3):304–308.