Immediate Changes in Blood-Gas Tensions During Chest Physiotherapy With Positive Expiratory Pressure and Oscillating Positive Expiratory Pressure in Patients With Cystic Fibrosis

Anna-Lena B Lagerkvist PT MSc PhD, Gunilla M Sten MSc, Staffan B Redfors MD PhD, Anders G Lindblad MD PhD, and Ola Hjalmarson MD PhD

OBJECTIVE: To assess and compare immediate effects of chest physiotherapy with positive expiratory pressure (PEP) versus oscillating PEP on transcutaneously measured blood-gas tensions in patients with cystic fibrosis. METHODS: Fifteen patients (mean age 12.5 years, range 6.9–21.5 years) participated. The treatments were randomized and performed on 2 separate occasions, 8 weeks apart. Spirometry was conducted before and after each treatment. We transcutaneously measured oxygen tension (P_{tO_2}) and carbon dioxide tension (P_{tCO_2}) 20 min before, during, and 10 min after each treatment. RESULTS: There were no changes in spirometry values. During PEP, different trends in blood-gas tension were seen, and there were no consistent changes. During oscillating PEP, P_{tO_2} increased and P_{tCO_2} decreased. During oscillating PEP, P_{tCO_2} was lower and the intra-individual change in P_{tCO_2} was more pronounced than during PEP. The results obtained immediately after oscillating PEP showed a higher P_{tO_2} and a lower P_{tCO_2} than with PEP. CONCLUSION: PEP and oscillating PEP can both cause transitory effects on blood gases in patients with cystic fibrosis. However, oscillating PEP alters blood-gas tensions more than does PEP, and hyperventilation during oscillating PEP may reduce treatment time. Key words: adolescent, chest physiotherapy, child, cystic fibrosis, oscillating positive expiratory pressure, positive expiratory pressure, transcutaneous blood gas tensions.

Introduction

One of the most important symptoms in cystic fibrosis (CF) is recurrent airway infections, with expectoration of mucus.1 To decrease the frequency of these infections, the mucus must be evacuated regularly, and it is thus important to have access to suitable chest physiotherapy methods. Traditional chest physiotherapy involves postural drainage combined with chest percussion and vibration.2–4 Alternative techniques have been developed with the aim of improving the efficiency of the treatment and encouraging patient autonomy.2,3,5 Positive expiratory pressure (PEP), obtained with a PEP valve,4–12 and oscillating PEP, obtained with the Flutter device,4,10–17 are 2 chest physiotherapy methods that do not require the assistance of a caregiver.8,13,14,16

The Flutter device creates an oscillating PEP, automatically regulated up to a maximum of 20 cm H$_2$O, and an intermittent acceleration of the expiratory airflow.14 Oscillating PEP is thought to facilitate mucus mobilization

Anna-Lena B Lagerkvist PT MSc PhD, Gunilla M Sten MSc, Staffan B Redfors MD PhD, Anders G Lindblad MD PhD, Ola Hjalmarson MD PhD are affiliated with the Department of Pediatrics, Institute for Clinical Sciences, the Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden.

This research was sponsored by the Gothenburg Children’s Hospital Research Foundation.

Some of the equipment and supplies used in this study were donated by Astra Tech (Mölndal, Sweden; positive-expiratory-pressure valve and manometer) and Axcan Scandipharm (Birmingham, Alabama; Flutter device).

Anna-Lena Lagerkvist PT MSc PhD presented a version of this paper at the annual congress of the European Respiratory Society, held September 4–8, 2004, in Glasgow, Scotland.

Anna-Lena Lagerkvist PT MSc PhD, Department of Physical Therapy, The Queen Silvia Children’s Hospital, S-416 85 Göteborg, Sweden. E-mail: anna-lena.lagerkvist@vgregion.se.

Correspondence: Anna-Lena Lagerkvist PT MSc PhD, Department of Physical Therapy, The Queen Silvia Children’s Hospital, S-416 85 Göteborg, Sweden. E-mail: anna-lena.lagerkvist@vgregion.se.
and clearance and to decrease mucus viscoelasticity within the airways. Oscillating PEP increases vital capacity and forced expiratory volume in the first second (FEV₁) in adults with bronchial asthma and chronic obstructive pulmonary diseases.

The expiratory pressure obtained with the PEP valve is individually determined and is regulated by the inner diameter of the fixed expiratory orifice and the patient’s respiratory flow pattern. Immediately after PEP, the functional residual capacity and forced vital capacity (FVC) increase in children with CF.

Thus, both PEP and oscillating PEP affect lung volumes and ventilatory properties of the lungs. However, we were interested in studying whether PEP and oscillating PEP can affect the main function of the lungs: gas exchange. After PEP, transcutaneously measured oxygen tension (P_{O2}) increases in patients with CF. We know of no report of transcutaneous monitoring during and after oscillating PEP, nor of any comparison of how the PEP valve and Flutter device affect blood-gas tensions during treatment.

The aim of the present study was to assess the immediate effects of PEP and oscillating PEP treatment on blood-gas tensions in patients with CF and to compare the results from these 2 chest physiotherapy methods.

Methods

Patients

The study was approved by the ethics committee of the medical faculty of Göteborg University, Sweden. Informed consent was obtained from the patients, or the parents of patients who were younger than 16 years of age.

Fifteen patients with CF (6 girls, 9 boys) (mean ± SD age 12.5 ± 5.1 y, range 6.9–21.5 y) were included in the study. All the patients had a pathological sweat test confirmed with the Gibson-Cooke sweat test. Six patients were chronically infected with *Pseudomonas aeruginosa* and 1 patient with *Stenotrophomonas maltophilia*. The other patients were not chronically infected with bacteria. At baseline, compared to healthy children and adolescents, P_{O2} was < −2 SD in 7 patients, within ± 2 SD in 3 patients, and > 2 SD in 5 patients. Transcutaneously measured carbon dioxide tension (P_{CO2}) was < −2 SD in 2 patients, within ± 2 SD in 4 patients, and > 2 SD in 9 patients. The median Shwachman score was 83 (range 58–98). When compared to individuals of the same age, all the patients were within ± 2 SD for height and weight.

Lung volumes are reported as percent-of-predicted values, based on sex, age (< 20 y and ≥ 20 y),21,22 and height (Table 1). Problems with mucus accumulation occurred daily in 6 patients and intermittently in 9 patients. Twelve patients inhaled a β₂ agonist or mycolytic agent before any of the treatments. The PEP valve equipment (Astra Tech, Mölndal, Sweden) consisted of a mouthpiece, a nose clip, a one-way valve, and 8 different expiratory orifices (inner-diameter range 1.5–5.0 mm). The PEP was recorded with a manometer and was set at 10–20 cm H₂O and regulated by the patient’s expiratory flow and the fixed orifice. The Flutter device (Axcan Scandipharm, Birmingham, Alabama) has a mouthpiece, a circular cone, a stainless steel ball, and a perforated cover.

A respiration monitor (Pneumoscreen, Intra Medic, Bälstad, Sweden) was used for spirometry. P_{O2} and P_{CO2} were measured with transcutaneous monitors (TCM2 and TCM20, Radiometer, Copenhagen, Denmark). The tem-

Table 1. Lung-Function Measurements Before and After Chest Physiotherapy With PEP and Oscillating PEP in 14 Patients With Cystic Fibrosis

<table>
<thead>
<tr>
<th>Metric</th>
<th>PEP Before</th>
<th>PEP After</th>
<th>Oscillating PEP Before</th>
<th>Oscillating PEP After</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (% of predicted)†</td>
<td>96.1 ± 15.6</td>
<td>98.6 ± 16.2</td>
<td>92.5 ± 12.7</td>
<td>91.4 ± 10.9</td>
</tr>
<tr>
<td>FEV₁ (% of predicted)</td>
<td>90.6 ± 19.9</td>
<td>91.7 ± 19.6</td>
<td>87.4 ± 19.9</td>
<td>86.4 ± 17.7</td>
</tr>
<tr>
<td>MEF_{50} (% of predicted)</td>
<td>86.4 ± 39.8</td>
<td>84.0 ± 34.5</td>
<td>82.0 ± 36.1</td>
<td>82.5 ± 34.8</td>
</tr>
<tr>
<td>MEF_{25} (% of predicted)</td>
<td>76.6 ± 45.2</td>
<td>72.2 ± 44.3</td>
<td>79.1 ± 46.7</td>
<td>76.8 ± 42.6</td>
</tr>
</tbody>
</table>

†Percent-of-predicted reference values based on sex, age, and height. None of the differences are statistically significant.
perature of the \(P_{\text{O}_2}\) electrode was 45°C, and it was cali-
brated by one-point calibration in air. The temperature of the
\(P_{\text{CO}_2}\) electrode was 43°C and it was calibrated by
one-point calibration in 5% carbon dioxide. All values
were corrected to 37°C and for ambient pressure. Before
and after each recording the results were corrected for
drift. The recordings were printed on a chart recorder (Ser-
vogor 460, Goerz Electro, Vienna, Austria).

Study Design

Chest physiotherapy with PEP and oscillating PEP was
performed on 2 separate occasions, 8 weeks apart, in con-
nection with a medical checkup. On the first occasion, 8
patients were randomized to use PEP and 7 patients to use
oscillating PEP. On the second occasion, all the patients
used the other treatment. Spirometry was performed be-
fore and after each treatment. The spirometry results be-
fore and after PEP therapy and before and after oscillating-
PEP therapy were compared within each method. We also
compared the changes in spirometry values induced by
each treatment. Transcutaneous blood gas monitoring was
conducted 20 min before, during, and until 10 min after
the treatments. The blood-gas tensions before and after
treatment were compared within each method. The blood-
gas tensions obtained before, during, and after PEP were
compared with the corresponding oscillating-PEP values.
We also compared the changes in blood-gas tensions in-
duced by each treatment.

Chest Physiotherapy With PEP

During the therapy, each patient sat on a chair with a
backrest, and used a nose clip and a mouthpiece. During
2 min, the patient breathed calmly into the device, with
only a small active expiration, with the aim to increase
functional residual capacity. Then the patient took away
the nose clip and the mouthpiece and evacuated mucus
with forced expirations for 2 min. This procedure was
repeated 3 times, which gave a total treatment time of
16 min. The instructions to the patient were: “You should
hold the Flutter device horizontally and expire into the
device for 1 min. To get the maximal vibration sensation
into the airways, you can tilt the device up or down from
the horizontal. Then you should take the device away from
your mouth for 2 min, when you should try to evacuate
mucus with forced expirations. You should do this proce-
dure for a total of 4 times.”

Chest Physiotherapy With Oscillating PEP

During the therapy, each patient sat on a chair with a
backrest. The Flutter device was held horizontally to start,
but the patient could, if desired, tilt the device up or down
from horizontal to get the maximal vibration sensation in
the airways. The patient inhaled deeply, put the device into
the mouth, and exhaled quickly into the device. This was
repeated during 1 min. Then, during 2 min, the patient
evacuated mucus with forced expirations. This procedure
was repeated 3 times, which gave a total treatment time of
12 min. The instructions to the patient were: “You should
hold the Flutter device horizontally and expire into the
device for 1 min. To get the maximal vibration sensation
into the airways, you can tilt the device up or down from
the horizontal. Then you should take the device away from
your mouth for 2 min, when you should try to evacuate
mucus with forced expirations. You should do this proce-
dure for a total of 4 times.”

Measurement Procedures

The recordings were made with the patient in the sitting
position. The \(P_{\text{O}_2}\) and \(P_{\text{CO}_2}\) electrodes were placed ven-
trally on one forearm.23 Continuous recordings of \(P_{\text{O}_2}\) and
\(P_{\text{CO}_2}\) were made for 46 min when using PEP and for
42 min when using oscillating PEP. After 10 min of re-
cord and 10 min before treatment, spirometry was con-
ducted 3 times. After 20 min, when \(P_{\text{O}_2}\) and \(P_{\text{CO}_2}\) had
reached a steady state, PEP therapy or oscillating-PEP
therapy was carried out. After the treatment, the blood-gas
recording continued during rest for another 10 min, until
\(P_{\text{O}_2}\) and \(P_{\text{CO}_2}\) had again reached a stable level. Spirometry
was then conducted 3 times.

The charts from before, during, and after the treatments
were analyzed. The blood-gas tensions reported are the
average of a stable recording over a 2-min period before
the treatment, the values immediately after the treatment,
and the average over a 2-min period after the treatment, as
soon as the recordings had stabilized. The means of the 4
highest \(P_{\text{O}_2}\) and \(P_{\text{CO}_2}\) and the 4 lowest \(P_{\text{O}_2}\) and \(P_{\text{CO}_2}\),
respectively, during PEP and oscillating PEP, were called
the maximal and the minimal values. The difference be-
tween the maximal and minimal values during the treat-
ment was called the intra-individual change. From the spi-
rometry, the charts with the highest FVC and FEV\(_1\), one
before and one after treatment, were analyzed.

Statistical Analysis

The two-tailed Student’s \(t\)-test was used to compare the
means of paired data. Calculations were made with statis-
tics software (StatView for Macintosh, StatView, Cary,
North Carolina). Probability values < 0.05 were consid-
ered significant.

Results

We accomplished data-recording with 14 patients dur-
ing PEP, and with 15 patients during oscillating PEP. The
\(P_{\text{O}_2}\) and \(P_{\text{CO}_2}\) charts from one PEP recording could not be
used because the recorder was out of order. The blood-gas tensions from this patient, before, during, and after the treatment were obtained from the transcutaneous monitor during the recording. One PtO₂ chart was jagged during PEP treatment, and the minimal and maximal values during the treatment could not be determined. Instead, the PtO₂ trends and the pre-treatment and post-treatment tensions were recorded. During oscillating PEP, one PtO₂ chart was not recorded because of a system failure of the transcutaneous monitor.

The first patient to receive the oscillating-PEP therapy performed four 2-min sessions (with 2 min of rest between the sessions), but over the course of the sessions she had successively decreasing PtCO₂ and began to feel very dizzy. Therefore, we had the subsequent patients perform four 1-min oscillating-PEP sessions (with 2 min of rest between the sessions). The results of the first patient’s oscillating-PEP sessions are presented separately.

PEP Treatment

During PEP we saw several trends in transcutaneous blood-gas tensions, but no consistent changes appeared. In all patients but one, the PtO₂ and PtCO₂ trends changed direction immediately after the treatment when the PEP valve was taken away from the patient’s mouth. Table 2 shows the blood-gas tensions before, during, and after PEP. The immediate results showed reduced PtCO₂ (p < 0.05) (Table 3 and Fig. 1), but no change was seen in PtO₂ (Table 3 and Fig. 2).

Table 4 shows the intra-individual changes in PtO₂ and PtCO₂ during PEP. A stable recording over a 2-min period was obtained 4.2 min (range 1.0–7.0 min) after the treatment.

The results at steady state showed no changes in PtO₂ or PtCO₂ (see Table 3). After PEP, no changes in spirometry values were seen (see Table 1).

Oscillating PEP Treatment

During oscillating PEP, all the patients had increasing PtO₂ and decreasing PtCO₂. Immediately after the treatment, when the Flutter device was taken away from the patient’s mouth, the trends in PtO₂ and PtCO₂ changed directions, with decreasing PtO₂ and increasing PtCO₂. Table 2 shows the blood-gas tensions before, during, and after oscillating PEP. The immediate results showed increased PtO₂ (p < 0.001) (see Table 3 and Fig. 2) and decreased PtCO₂ (p < 0.001) (see Table 3 and Fig. 1).

Table 4 shows the intra-individual changes in PtO₂ and PtCO₂. A stable recording over a 2-min period was obtained 5.3 min (range 2.3–7.9 min) after the treatment. The results at steady state showed no changes in PtO₂ or PtCO₂ (see Table 3). After oscillating PEP, no changes in spirometry values were seen (see Table 1).

The patient who used oscillating PEP for four 2-min sessions showed increasing PtO₂ and successively decreasing PtCO₂ during the treatment, which was associated with dizziness. The differences between her highest and lowest PtO₂ and PtCO₂ during the treatment were 28.5 mm Hg and 12.8 mm Hg, respectively. Immediately after the treatment her PtO₂ and PtCO₂ were 87.8 mm Hg and 21.0 mm Hg, respectively (Fig. 3).

Comparison of PEP and Oscillating-PEP

During oscillating PEP there was a more pronounced intra-individual change in PtCO₂ (p < 0.01) (see Table 4),
and during and immediately after oscillating PEP, PtCO2 was lower, compared with PEP (p < 0.05) (see Table 2). The immediate results after oscillating PEP showed higher PtO2 (p < 0.05) and lower PtCO2 (p < 0.0001), compared with PEP (see Table 3). At steady state after the treatments, all differences between methods disappeared and there was no sustained effect on blood gases. There were no differences in the spirometry values after treatment (see Table 1).

Discussion

The aims of chest physiotherapy are, among others, to evacuate airway mucus and to improve ventilation.2 It is important to evaluate the effects of each chest physiotherapy method used, to have a possibility of choosing the most appropriate method for each patient. Many studies have used the amount of expectorated mucus to evaluate the efficacy of a chest physiotherapy method.5,7,9,13,15 This evaluation method has been criticized by several authors,9,24 because a patient’s sputum production varies from day to day, sputum production differs between patients, and the sputum is not necessarily expectorated (some of it may be swallowed).9,10,24 Another approach is to evaluate the effect of chest physiotherapy on gas exchange. In the present study, transcutaneous blood-gas monitoring was used because it is noninvasive and provides continuous evaluation during the treatment.23

In children and adolescents, PtO2 and PtCO2 follow the arterial blood-gas tensions, but PtO2 is somewhat lower than PaO2, and PtCO2 is somewhat higher than PaCO2.23

Table 3. Mean Changes in PtO2 and PtCO2 Induced by PEP and Oscillating PEP Therapy in Patients With Cystic Fibrosis

<table>
<thead>
<tr>
<th></th>
<th>PEP</th>
<th>Oscillating PEP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Change Mean ± SD (mm Hg)</td>
</tr>
<tr>
<td>PtO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediately after treatment</td>
<td>13</td>
<td>0.3 ± 6.0</td>
</tr>
<tr>
<td>At steady state after treatment</td>
<td>13</td>
<td>0.8 ± 3.8</td>
</tr>
<tr>
<td>PtCO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediately after treatment</td>
<td>14</td>
<td>−1.5 ± 2.3</td>
</tr>
<tr>
<td>At steady state after treatment</td>
<td>14</td>
<td>0.0 ± 2.3</td>
</tr>
</tbody>
</table>

*A steady-state level was defined as the average of a stable recording over a 2-min period before treatment with positive expiratory pressure (PEP) therapy or oscillating PEP therapy and the average over a 2-min period after the treatments as soon as the recordings again were stable.

CI = confidence interval
PtO2 = transcutaneously measured oxygen tension
PtCO2 = transcutaneously measured carbon dioxide tension

Fig. 1. Difference in transcutaneously measured carbon dioxide tension (PtCO2) measured immediately before and immediately after chest physiotherapy with positive expiratory pressure (PEP) and oscillating PEP in 14 patients with cystic fibrosis.

Fig. 2. Difference in transcutaneously measured oxygen tension (PtO2) measured immediately before and immediately after chest physiotherapy with positive expiratory pressure (PEP) in 14 patients with cystic fibrosis, and with oscillating PEP in 13 of those 14 patients.
Some investigators have used transcutaneous monitoring to describe blood-gas tensions during PEP, but none during oscillating PEP. Instead, oxygen saturation values obtained after PEP and oscillating PEP have been reported. However, in the upper part of the oxygen-dissociation curve, even large changes in PO2 yield small changes in oxygen saturation.

It was impossible to blind the patients or physiotherapist to the treatments, because the PEP valve is of a different design than the Flutter device, and the immediate effects obtained when using the 2 devices are different. The PEP valve creates a consistent resistance to expiration, whereas the Flutter causes an oscillating resistance. However, we had no preference for one of the 2 methods and wanted only to examine if and how the methods had any effect on PtO2 and/or PtCO2. We therefore concluded that blinding the methods was not essential.

It was planned that the patients would use PEP and oscillating PEP for 2 min, 4 times each. At the first recording with oscillating PEP, the patient had successively decreasing PtCO2 and dizziness. This showed that chest physiotherapy can profoundly affect blood-gas tensions and that it may be important to gain knowledge about this matter. Because of that patient’s reaction, we decreased the oscillating PEP sessions to 1 min, 4 times. Hyperventilation during oscillating PEP has also been described by van Winden et al and Konstan et al.

Our results show that both PEP and oscillating PEP can influence blood-gas tensions, but only oscillating PEP gave a homogeneous result in all patients, with increasing PtO2 and decreasing PtCO2 for as long as the treatment lasted. The immediate results showed a higher PtO2 and a lower PtCO2 with oscillating PEP, and the intra-individual change in PtCO2 was higher during oscillating PEP, all compared to

Table 4. Intra-Individual Changes in PtO2 and PtCO2 During PEP and Oscillating PEP Therapy in Patients With Cystic Fibrosis

<table>
<thead>
<tr>
<th></th>
<th>PEP</th>
<th>Oscillating PEP</th>
<th>p (PEP vs oscillating PEP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Change</td>
<td>Min/max</td>
<td>95% CI of mean</td>
</tr>
<tr>
<td></td>
<td>Mean ± SD (mm Hg)</td>
<td>(mm Hg)</td>
<td>(mm Hg)</td>
</tr>
<tr>
<td>PtO2</td>
<td>12</td>
<td>9.0 ± 3.8</td>
<td>2.3/16.5</td>
</tr>
<tr>
<td>PtCO2</td>
<td>14</td>
<td>3.0 ± 1.5</td>
<td>0.8/6.8</td>
</tr>
</tbody>
</table>

*The change was defined as the difference between the means of the 4 highest and the 4 lowest PtO2 and PtCO2, respectively, in each patient during positive expiratory pressure (PEP) therapy and oscillating PEP therapy.

CI = confidence interval
PtO2 = transcutaneously measured oxygen tension
PtCO2 = transcutaneously measured carbon dioxide tension

![Graph](image-url)
PEP. The instructions for how to perform the PEP and oscillating PEP treatment were, however, not exactly the same. The PEP method used was that described by Falk et al, using diaphragmatic breathing with only a slightly active expiration.6 When using oscillating PEP, the patient inhaled deeply and exhaled quickly into the device.10 Overwaldner et al described a method of high-pressure PEP in which the patient actively exhales into the PEP valve.27 If this method had been used in the present study, the results of the PEP treatment might have been more similar to those obtained with oscillating PEP.

Our definition of the steady-state level as a stable recording of P\textsubscript{O\textsubscript{2}} and P\textsubscript{CO\textsubscript{2}} over a 2-min period was jointly agreed by all the authors. The records were then analyzed by one of the authors, which may have created an opportunity for observer bias. However, our definition of steady-state level implied that the graphs should be horizontal, which was not difficult to determine. We therefore considered it unlikely that bias would be introduced from the determination of the steady-state level.

Compared to baseline, P\textsubscript{O\textsubscript{2}} is higher immediately after PEP in patients with CF25 and respiratory insufficiency.25 Also compared to baseline, P\textsubscript{CO\textsubscript{2}} is lower immediately after PEP in adults with respiratory insufficiency25 and chronic obstructive pulmonary disease.26 In the present study, both PEP and oscillating PEP reduced P\textsubscript{CO\textsubscript{2}} during the treatment period. A stable recording occurred relatively quickly after either PEP or oscillating PEP, but no differences in blood gases were seen, compared to before the treatments. The present study confirms the finding of Heral et al26 that PEP has no sustained effect on P\textsubscript{CO\textsubscript{2}}.

Van Winden et al found no changes in blood oxygen saturation in patients with CF after PEP or oscillating PEP. They suggested that their results could be due to the relatively high baseline oxygen-saturation values of the patients in their study.10 In the present study, also, patients with a normal baseline P\textsubscript{CO\textsubscript{2}} and P\textsubscript{O\textsubscript{2}}19 showed changed P\textsubscript{CO\textsubscript{2}} and P\textsubscript{O\textsubscript{2}} values immediately after the treatments. These results indicate that PEP and oscillating PEP can also affect blood gases within the normal range. The differences between our results and those of van Winden et al10 may be because, in the upper part of the oxygen-dissociation curve, P\textsubscript{O\textsubscript{2}} changes more than oxygen saturation does.

In the present study there were no changes in spirometry values after PEP or oscillating PEP. This is in contrast to the results of Falk et al, who found increased FVC after PEP.6 Gondor et al found better improvements in FVC and FEV\textsubscript{1} after a week of oscillating PEP treatments than after traditional chest physiotherapy in children and young adults with CF and pulmonary exacerbation.28 In contrast, McIlwaine et al found lower FVC in children with CF who regularly had used oscillating PEP for a year, compared with PEP. They tried to explain this result by suggesting that some airway closure may occur, resulting in air trapping after using oscillating PEP, thus decreasing FVC11. This shows that different results can be obtained when studying patients with CF. One explanation for the different results reported from the present study and the study by McIlwaine et al may be that the present study reported the immediate effects after oscillating PEP, whereas McIlwaine et al reported long-term effects of oscillating PEP.11

In the present study, both treatments induced hyperventilation, though oscillating PEP induced hyperventilation more than did PEP. This may explain both the decreased P\textsubscript{CO\textsubscript{2}} and the increased P\textsubscript{O\textsubscript{2}} after oscillating PEP. The previously reported mucous-evacuating effects of PEP and oscillating PEP6,13 were not addressed in the present study, but might be explained by increased ventilation and high airflow produced by the treatments.29 The physiologic mechanism of the mucous-evacuating effects, and whether PEP or oscillating PEP cause any changes in ventilation-perfusion ratio, remain to be studied.

Summary

Both PEP and oscillating PEP can cause transitory effects on blood gases in patients with CF. Oscillating PEP causes greater changes than PEP. However, hyperventilation during oscillating PEP can cause immediate discomfort (dizziness) and cause treatment time to be reduced. Spirometry values were not affected by PEP or oscillating PEP. The long-term effects and physiologic mechanisms of the previously reported improved mucus-evacuation with PEP and oscillating PEP6,13 were not addressed in this study and remain to be studied.

REFERENCES

