AARC Clinical Practice Guideline

Application of Continuous Positive Airway Pressure to Neonates via Nasal Prongs, Nasopharyngeal Tube, or Nasal Mask—2004 Revision & Update

NCPAP 1.0 PROCEDURE:
The application of continuous positive airway pressure to neonates and infants by nasal prongs (NCPAP), nasopharyngeal tube (NP-CPAP), or infant nasal mask (NM-CPAP) administered with a commercially available circuit used in conjunction with a continuous flow source, infant ventilator, or a suitably equipped multipurpose ventilator.

NCPAP 2.0 DESCRIPTION/DEFINITION:
Continuous positive airway pressure (CPAP) is the application of positive pressure to the airways of the spontaneously breathing patient throughout the respiratory cycle. For the most part, neonates are preferential nose breathers, which easily facilitates the application of nasal CPAP. This is accomplished by inserting nasopharyngeal tubes, affixing nasal prongs, or fitting a nasal mask to the patient. The device provides heated and humidified continuous or variable flow from a circuit connected to a continuous gas source, mechanical ventilator designed for neonates, or a suitably equipped multipurpose ventilator, set in the CPAP mode.

CPAP maintains inspiratory and expiratory pressures above ambient pressure, which results in an increase in functional residual capacity (FRC) and improvement in static lung compliance, and decreased airway resistance in the infant with unstable lung mechanics. This allows a greater volume change per unit of pressure change (ie, greater tidal volume for a given pressure change) with subsequent reduction in the work of breathing and stabilization of minute ventilation. CPAP increases mean airway pressure, and the associated increase in FRC should improve ventilation-perfusion relationships and potentially reduce oxygen requirements. Additionally CPAP may expand, or stent, upper airway structures preventing collapse and upper airway obstruction.

NCPAP 3.0 SETTINGS:
NCPAP, NP-CPAP, and NM-CPAP are applied by trained personnel in acute and subacute care hospitals.

NCPAP 4.0 INDICATIONS:
4.1 Abnormalities on physical examination—the presence of increased work of breathing as indicated by an increase in respiratory rate of > 30% of normal, substernal and suprasternal retractions, grunting, and nasal flaring.
4.2 Inadequate arterial blood gas values—the inability to maintain a PaO₂ > 50 torr with FIO₂ ≤ 0.60 provided VE is adequate as indicated by a PaCO₂ level of 50 torr and a pH ≥ 7.25.
4.3 The presence of poorly expanded and/or infiltrated lung fields on chest radiograph.
4.4 The presence of a condition thought to be responsive to CPAP and associated with one or more of the clinical presentations in 4.1-4.3.
4.4.1 Respiratory distress syndrome
4.4.2 Pulmonary edema
4.4.3 Atelectasis
4.4.4 Apnea of prematurity
4.4.5 Recent extubation
4.4.6 Tracheal malacia or other similar abnormality of the lower airways
4.4.7 Transient tachypnea of the newborn
4.5 Early intervention in conjunction with surfactant administration for very low birthweight infants at risk for developing respiratory distress syndrome.
4.6 The administration of controlled concentrations of nitric oxide in spontaneously breathing infants.
NCPAP 5.0 CONTRAINDICATIONS:

5.1 Although NCPAP, NP-CPAP, and NM-CPAP have been used in bronchiolitis, this application may be contraindicated.66,67

5.2 The need for intubation and/or mechanical ventilation as evidenced by the presence of

5.2.1 Upper airway abnormalities that make NCPAP, NP-CPAP, or NM-CPAP ineffective or potentially dangerous (eg, choanal atresia, cleft palate, tracheoesophageal fistula)67

5.2.2 Severe cardiovascular instability and impending arrest

5.2.3 Unstable respiratory drive with frequent apneic episodes resulting in desaturation and/or bradycardia

5.2.4 Ventilatory failure as indicated by the inability to maintain PaCO2 < 60 torr and pH > 7.2531,38

5.3 Application of NCPAP, NP-CPAP, or NM-CPAP to patients with untreated congenital diaphragmatic hernia may lead to gastric distention and further compromise of thoracic organs.57

NCPAP 6.0 HAZARDS/COMPLICATIONS:

6.1 Hazards and complications associated with equipment include the following

6.1.1 Obstruction of nasal prongs from mucus plugging or kinking of nasopharyngeal tube may interfere with delivery of CPAP and result in a decrease in FiO2 through entrainment of room air via opposite naris or mouth.

6.1.2 Inactivation of airway pressure alarms

6.1.2.1 Increased resistance created by turbulent flow through the small orifices of nasal prongs and nasopharyngeal tubes can maintain pressure in the CPAP system even when decannulation has occurred. This can result in failure of low airway pressure/disconnect alarms to respond.7

6.1.2.2 Complete obstruction of nasal prongs and nasopharyngeal tubes results in continued pressurization of the CPAP system without activation of low or high airway pressure alarms.49

6.1.3 Activation of a manual breath (commonly available on infant ventilators) may cause gastric insufflation and patient discomfort particularly if the peak pressure is set inappropriately high.70

6.1.4 Insufficient gas flow to meet inspiratory demand resulting in a fluctuating baseline pressure and an increase in the work of breathing77

6.1.5 Excessive flow results in overdistension from increased work of breathing due to incomplete exhalation and inadvertent PEEP levels71

6.1.6 Decannulation or malpositioning of prongs or nasopharyngeal tubes causing fluctuating or reduced CPAP levels

6.1.7 Aspiration or accidental swallowing of small pieces of the detachable circuit or nasal device assembly72

6.1.8 Nasal excoriation, scarring, pressure necrosis, and septal distortion73,74

6.1.9 Skin irritation of the head and neck from improperly secured bonnets or CPAP head harnesses

6.2 Hazards and complications associated with the patient’s clinical condition include

6.2.1 Lung overdistention leading to

6.2.1.1 Air leak syndromes75-81

6.2.1.2 Ventilation-perfusion mismatch82

6.2.1.3 CO2 retention and increased work of breathing73,83

6.2.1.4 Impedance of pulmonary blood flow with a subsequent increase in pulmonary vascular resistance and decrease in cardiac output39,84

6.2.2 Gastric insufflation and abdominal distention potentially leading to aspiration76,81,85

6.2.3 Nasal mucosal damage due to inadequate humidification78

NCPAP 7.0 LIMITATIONS OF DEVICE:

7.1 NCPAP, NP-CPAP, and NM-CPAP applications are not benign procedures, and operators should be aware of the possible hazards and complications and take all necessary precautions to ensure safe and effective application.

7.2 Mouth breathing during NCPAP, NP-CPAP, and NM-CPAP may result in loss of desired pressure and decrease in delivered oxygen con-
centration. However, most studies demonstrate effective NCPAP without mouth closure.11

7.3 NCPAP harnesses and attachment devices are often cumbersome and difficult to secure and may cause agitation and result in inadvertent decannulation.7,11,86

7.4 Excessive head rotation or neck extension may alter the position of NP-CPAP tube placement or obstruct upper airway structures resulting in diminished or altered pressure, flow, and effective CPAP.11,48

7.5 Severe RDS, septicemia during NCPAP administration, and pneumothorax are risk factors associated with NCPAP failure.68,79,90

NCPAP 8.0 ASSESSMENT OF NEED:
Determination that valid indications are present by physical, radiographic, and laboratory assessments.

NCPAP 9.0 ASSESSMENT OF OUTCOME:
CPAP is initiated at levels of 4-5 cm H2O and may be gradually increased up to 10 cm H2O to provide the following13,25,30,33,59,86,91

9.1 Stabilization of FIO2 requirement ≤ 0.60 with PaO2 levels > 50 torr and/or the presence of clinically acceptable noninvasive monitoring of oxygen (PtcO2), while maintaining an adequate VE as indicated by PaCO2 of 50-60 torr or less and pH ≥ 7.2519,29,64,92-94

9.2 Reduction in the work of breathing as indicated by a decrease in respiratory rate by 30-40% and a decrease in the severity of retractions, grunting, and nasal flaring33,37,69

9.3 Improvement in lung volumes and appearance of lung as indicated by chest radiograph19,69

9.4 Improvement in patient comfort as assessed by bedside caregiver

9.5 Clinically significant reduction in apnea, bradycardia, and cyanosis episodes

NCPAP 10.0 RESOURCES:
10.1 Equipment

10.1.1 Endotracheal tubes (positioned in the nasopharynx and secured by taping, with placement verified by laryngoscopy or palpation) or commercially available nasal prongs, bilateral nasopharyngeal tubes, or specially designed nasal masks with accompanying harness and accessories may be used for CPAP administration.11,17,19,50,97

10.1.1.1 Unilateral nasopharyngeal prongs may be less effective in preventing extubation failure than bilateral short prongs.17,98,99

10.1.2 Continuous flow air-oxygen gas source; commercially available continuous-flow infant ventilators equipped with CPAP mode; CPAP flow driver with fluidic nasal interface, or suitably equipped multipurpose ventilator, with integrated or adjunct low and high airway pressure alarms, oxygen concentration analyzer with low and high alarms, loss of power and gas source alarms.14,19,100,101

10.1.2.1 A continuous gas flow source requires a mechanical pressure limiting device, or a flow or threshold resistor, which includes the use of an underwater threshold resistor, eg Bubble CPAP102

10.1.3 Lightweight CPAP or ventilator circuits with servo-regulated humidification system18

10.1.4 Continuous noninvasive oxygenation monitoring by pulse oximetry or transcutaneous monitor with high and low alarm capabilities is recommended (continuous transcutaneous CO2 monitoring may also be utilized).101,102

10.1.5 Continuous electrocardiographic and respiratory rate monitor, with high and low alarm capabilities, is recommended.

10.1.6 Suction source, suction regulator, and suction catheters for periodic suctioning to assure patency of nasal passages and of endotracheal tubes used for NP-CPAP are necessary.103

10.1.7 Resuscitation apparatus with airway manometer and masks of appropriate size must be available.

10.1.8 Gastric tube for periodic decompression of stomach and chest tubes should be available.

10.2 Personnel: The application of NCPAP, NP-CPAP, and NM-CPAP should be performed under the direction of a physician by trained personnel who hold a recognized credential
(eg, CRT, RRT, RN) and who competently demonstrate

10.2.1 Proper use, understanding, and mastery of the technical aspects of CPAP devices, mechanical ventilators, and humidification systems

10.2.2 Knowledge of ventilator management and understanding of neonatal airway anatomy and pulmonary physiology

10.2.3 Patient assessment skills, with an understanding of the interaction between the CPAP device and the patient and the ability to recognize and respond to adverse reactions and complications

10.2.4 Knowledge and understanding of artificial airway management, training in the procedures of placing endotracheal tubes in the nasopharynx

10.2.5 The ability to interpret monitored and measured blood gas values and vital signs

10.2.6 The application of Standard Precautions

10.2.7 Proper use, understanding, and mastery of emergency resuscitation equipment and procedures

10.2.8 The ability to assess, evaluate, and document outcome (Section 9.0)

NCPAP 11.0 MONITORING:

11.1 Patient-ventilator system checks should be performed at least every 2 to 4 hours and include documentation of mechanical settings, alarms, and patient assessments as recommended by the AARC CPG Patient-Ventilator System Checks (MV-SC) and the CPG Humidification During Mechanical Ventilation (HMV).

11.2 Oxygen and carbon dioxide monitoring, including

11.2.1 Periodic sampling of blood gas values by arterial, capillary, or venous route

11.2.2 Continuous noninvasive blood gas monitoring by transcutaneous O₂ and CO₂ monitors

11.2.3 Continuous noninvasive monitoring of oxygen saturation by pulse oximetry

11.3 Continuous monitoring of electrocardiogram and respiratory rate

11.4 Continuous monitoring of proximal airway pressure (Paw), PEEP, and mean airway pressure (Paw)

11.5 Continuous monitoring of FIO₂

11.6 Periodic physical assessment of breath sounds and signs of increased work of breathing (see Section 4.1)

11.7 Periodic evaluation of chest radiographs

11.8 Periodic assessment of nasal septum

NCPAP 12.0 FREQUENCY:

NCPAP, NP-CPAP, and NM-CPAP are intended for continuous use and discontinued when the patient’s clinical condition improves as indicated by successful outcome assessments (Section 9.0).

NCPAP 13.0 INFECTION CONTROL:

No special precautions are necessary, but Standard Precautions as described by the Centers for Disease Control should be employed.

13.1 Disposable nasal CPAP kits are recommended and are intended for single-patient use.

13.2 Routine disposable circuit changes are unnecessary for infection control purposes when the humidifying device is other than an aerosol generator.

13.3 External surfaces of ventilator should be cleaned according to the manufacturer’s recommendations when the device has remained in a patient’s room for a prolonged period, when soiled, when it has come in contact with potentially transmittable organisms, and after each patient use.

13.4 Sterile suctioning procedures should be strictly adhered to.

Revised by Mike Czervinske RRT-NPS, University of Kansas Medical Center, Kansas City, Kansas, and approved by the 2003 CPG Steering Committee

Original Publication: Respir Care 1994;39(8):817-823.

REFERENCES

31. Chatburn RL. Similarities and differences in the management of acute lung injury in neonates (IRDS) and in adults (ARDS). Respir Care 1988;33(7):539-553.


82. Schlobohm RM, Falltrick RT, Quan SF, Katz JA. Lung volumes, mechanics, and oxygenation during spontaneous positive-pressure ventilation: the advantage of CPAP over EPAP. Anesthesiology 1981;55(4):416-422.


96. Davis P, Davies M, Faber B. A randomised controlled trial of two methods of delivering nasal continuous positive airway pressure after extubation to infants weighing less than 1000 g: binasal (Hudson) versus single nasal prongs. Arch Dis Child Fetal Neonatal Ed 2001;85(2):F82-F85.